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Abstract

This paper proposes to model market mechanisms as a collective learning process
for firms in a complex adaptive system, namely Jamel, an agent-based, stock-flow
consistent macroeconomic model. Inspired by Alchian’s (1950) “blanketing shotgun
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of recurrent deep downturns. We conclude that, in complex evolving economies,
market processes do not lead to the selection of optimal behaviors, as the charac-
terization of successful behaviors itself constantly evolves as a result of the market
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than the adaptation capabilities of the agents that populate it.
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1 Introduction

A market operates on a decentralized ground: it is a place where a collection of hetero-

geneous agents locally and constantly interact, without seeing the resulting whole picture.

This property poses a challenge to the use of a representative agent with rational expect-

ations, and raises the question of how to model agents’ behaviors and learning in market

economies. This paper proposes a decentralized adaptation model rooted in the function-

ing of the market itself: the selection mechanism operates through market competition,

as firms that use non performing strategies are driven out of the market by bankruptcy.

The idea that market mechanisms determine the aggregate behavior of the system,

by selecting appropriate behaviors and discarding inappropriate ones, without the need

to model any rationality, foresight of adaptive behavior from the individual agents is

originally due to Alchian (1950). Alchian (1950, p. 219) calls such a process the “blanket-

ing shotgun process” (BSP hereafter): a multitude of agents randomly select strategies,

without assuming any intentional decision making at the individual level, and the market

selects the best-performing behaviors by excluding the unsuccessful ones. This process

requires individual heterogeneity and market interactions, and postulates that the col-

lective adaptation force of the system is superior to the one of the individual agents.

This process also puts more emphasis on the exploration for potential strategies than on

the exploitation of already discovered strategies. The BSP therefore appears particularly

well-suited to represent adaptation of a population in an ever-changing environment. We

believe that all these features, rather than referring to the principle of the survival of

the fittest as a defense of profit maximization, bring simple but relevant principles that

are reconcilable with, and even precursory of both the theory of bounded rationality (Si-

mon 1961) and evolutionary economics (Nelson & Winter 1982), and may be useful for

modeling behavior in macro ABMs. Besides, our approach shares affinities with early

evolutionary growth models in the way learning and adaptation are modeled (Silverberg

& Verspagen 1994a,b).
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In this paper, we introduce investment and capital depreciation in the Jamel model1,

along with refinements in the banking sector. Investment dynamics brings instability into

the macroeconomic dynamics of the model compared to previous versions, and reinforces

market competition. We then apply the principles of the BSP to the determination of

firms’ leverage strategies. We choose this model as a playground because it is simple

enough to get a grip on the emerging dynamics, while allowing for rich monetary and real

interactions between agents, and especially between firms, in a fully stock-flow consistent

(SFC) framework.2 We choose the leverage strategies for testing the BSP because this

decision is in several ways particularly challenging from the firms’ perspective. Lever-

age decisions amount specifically to solving a “growth-safety trade-off”, i.e. a trade-off

between a continuous, debt-financed increase in market capacities, and financial safety,

that preserves a low debt level, but at the risk of loosing productive capital, if investment

is insufficient to renew depreciating capital, and market shares (Crotty 1990, 1992, 1993,

Crotty & Goldstein 1992). The debt behaviors of firms in turn collectively contribute to

shape the macroeconomic environment, so that the environment constantly changes, and

complex dynamics emerge. In such an hostile and selective environment, not even the

modeler would be able to identify an “optimal” solution. We therefore let the leverage

strategies of a collection of competing firms evolve on a completely random basis, and the

only selection pressure comes from bankruptcies.

With the Jamel model as a playground, we perform a theoretical exercise that aims

to assess to what extent the process of “natural” market selection constitutes a suitable

adaptation model for agents in a complex system. This amounts to characterizing the

dynamics that emerge from ever-adapting individual behaviors under the sole selection

pressure of market conditions, that they in turn contribute to shape: Can the system settle

down on an “equilibrium”? Otherwise, what are the emerging dynamics? Admittedly,
1Jamel stands for Java Agent-based MacroEconomic Laboratory, see Seppecher (2012b,a), Seppecher

& Salle (2015).
2Following Cincotti et al. (2010), Kinsella et al. (2011) and Seppecher (2012a), a growing literature

has emphasized the interest of combining SFC and ABM principles, see Caverzasi & Godin (2015). A
non-exhaustive list of SFC-AB models, besides Jamel includes Raberto et al. (2012), Caiani et al. (2016),
Riccetti et al. (2014), Russo et al. (2016).
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the use of evolutionary learning mechanisms to model firms’ adaptation under market

competition is not new, especially in the AB literature. Our implementation differs,

though, along a number of dimensions, that makes our algorithm a very parsimonious and

effective way of addressing the so-called “wilderness of bounded rationality”, as explained

in Section 2. More importantly, the novelty of our paper is a formal and detailed analysis

of those evolutionary mechanisms. We shed light on their implications on the micro and

the macro dynamics, while those mechanisms have been embedded into ABMs in a mostly

implicit way, without being the focus of the analysis.

Our results are as follows. Decentralized market selection allows the firms to col-

lectively adapt the overall leverage level to the changes in the macro environment in a

way that the system can sustain itself. However, this regulation comes at the price of

wild fluctuations and deep downturns. This emerging macro dynamics are caused by a

clear alternating pattern between a sustained rise in indebtedness along the boom phase,

that feeds back into the goods demand, and brutal deleveraging movements along the

busts, once the financial fragility of firms, combined with increased interest rates and

excess production capacities, increases to the point where insolvency and bankruptcies

are unavoidable. We conclude that, even if the “natural” market selection process allows

for a certain resilience and adaptability of the system, it does not result in collective

optimization or convergence towards an “optimal” equilibrium. Our conclusion stands in

sharp contrast to the view, dating back to Friedman (1953), that systematically advocates

market selection to justify full rationality assumptions and equilibrium reasoning.

We then make the point that heterogeneity of behaviors is essential to the adaptation

process of a population in an unstable, and quickly evolving environment. The BSP allows

us to make this heterogeneity endogenous and dynamic: it combines converging forces

(market selection and imitation) with diverging forces (exploration), so that behaviors co-

evolve with the macroeconomic dynamics that they contribute to shape. This property

makes the BSP an appealing candidate to model learning and adaptation in complex

adaptive systems. We show that, while individual and aggregate behaviors appear to

commonly self-reinforce each other, they can suddenly disconnect from each other. This
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observation leads us to suggest an evolutionary characterization of a crisis, as the point

where the evolution of the macro system becomes faster than the adaptation capabilities

of the agents that populate it.

The rest of the paper is organized as follows. Section 2 discusses the non-trivial prob-

lem of modeling individual behaviors in complex systems and details our implementation

of the BSP, Section 3 details the Jamel model, Section 4 presents the results from the

numerical simulations, and Section 5 discusses the results and concludes with the charac-

terization of a crisis in the model.

2 Modeling individual behavior in macro ABMs: learn-

ing and adaptation

This section paves the way to the introduction of the adaptation process based on the

BSP in the Jamel model. We first discuss the challenges posed by the modeling of agents’

behavior in macro ABMs. We then define the concepts of adaptation and learning and

stress their importance in this type of models. We finally contrast individual versus social

learning by focusing on evolutionary models and discuss their limitations.

2.1 Particularities and challenges

The “wilderness of bounded rationality” The functioning of ABMs is rooted in a

multitude of heterogeneous agents who repeatedly interact in a decentralized way. Those

interactions generate complexity, in the sense that even the perfect knowledge of individual

behavior is not enough to anticipate the resulting macroeconomic outcomes. In such a

complex world, uncertainty is both strategic and radical: there is no trivial probabilistic

mapping between the entire set of possible actions of an agent and the resulting states of

the world and associated pay-off. Neither the agents nor the modeler may be able to define

what the fully rational/optimal decision is (Dosi et al. 2003). As a consequence, the use of

the standard microeconomic maximization tools is not suited in ABMs, agents’ rationality
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can only be bounded, in the sense of Simon (1955), i.e. procedural and adaptive. The

challenge is how to model this boundedly rational behavior. This is a challenge because

the modeler has to cope with the so-called “wilderness of bounded rationality” (Sims 1980):

while there is one single way of solving an optimization program, there are many ways of

being boundedly rational, and the question is how to discriminate between the multitude

of alternative behavioral rules. This is a crucial question as the dynamics of the ABM,

and the conclusions drawn from their analysis, are likely to depend on the behavioral

rules that have been incorporated into it.

Empirical observations as the main guideline We argue that what we can ob-

serve from real-life behavior should be the main ground for modeling agents’ behavior

in artificial economies (Cohen 1960, Farmer & Foley 2009). The growing amount of ex-

perimental evidence from controlled lab environments with human subjects in economics,

sociology and psychology, as well as the increasing availability of survey data has fueled

our knowledge of how agents actually behave under alternative environments. However,

this collection of empirical evidence comes with limitations. People behavior do not al-

ways find a clear-cut interpretation, they can be highly heterogeneous and can vary from

one period to the next.3 In other words, real agents’ behaviors are unstable, and any

attempt to summarize agents’ reaction by a fixed behavioral rule derived from a sample

of empirical observations may pose a problem of realism. Such an attempt could be ac-

ceptable if the model is only aimed at the analysis of very short-run dynamics, over which

we can consider that agents’ behavior is fixed. However, when it comes to the analysis of

longer-run dynamics, this modeling strategy introduces an ad-hoc, exogenous stickiness

in the model that may distort the conclusions. When it comes to policy analysis and

the comparison of different model scenarios, this strategy does not allow to address the

so-called Lucas critique: fixing behavioral rules amounts to performing ceteris paribus

analysis, and ignoring that policy changes are likely to affect in turn micro behavior.

This was also the criticism made by Keynes to Tinbergen’s macroeconometric models
3For instance, Lainé 2016 shows the challenge posed by the heterogeneity of the observed investment

behavior of firms if one seeks to derive a model of investment decisions.
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(Keuzenkamp 1995). What is more, we argue that this is a gross contradiction with the

decentralized and autonomous nature of ABMs (Gaffeo et al. 2008, Delli Gatti et al. 2010).

Modeling adaptation and learning The alternative to the use of a fixed set of be-

havioral rules is to endow agents with a genuine ability to adapt or, in other words, to

learn (Farmer & Geanakoplos 2009). Modeling learning shall be understood as designing

behaviors that agents constantly and endogenously adapt as a reaction to the feedback

that they receive from their environment. Modeling learning can combine heuristics based

on empirical observations and adaptation (Delli Gatti et al. 2010). This idea is also at the

root of the heterogeneous agent literature in which agents endogenously switch between a

fixed (Brock & Hommes 1997) or evolving (Anufriev et al. 2015) set of heuristics according

to their relative pay-off performances.

By inducing an intricate co-evolution between the micro and the macro dynamics,

learning introduces an additional layer of complexity to the model (Winter 1971). On the

one hand, agents adapt their behavior as a result of the macro environment, so that the

macro level feeds back into the micro level. On the other, there is an interdependence

between individual learning behavior. This is precisely what March (1991, p. 81) defines as

an “ecology of competition”. As a result from this ecology of competition, the environment

in which agents interact cannot be considered as exogenous and is, on the contrary, ever-

changing (Dosi et al. 2003). This idea is a crucial component of complex adaptive systems

as discussed by Holland (1992). Because the environment is constantly changing, this

type of systems cannot be comprehended in terms of fixed point analysis, in which the

equilibrium of the system is the fixed point of the mapping between beliefs and realizations,

as this is the case for rational expectations macro models. On the contrary, in such a

context, learning goes hand-to-hand with adaptation.This point had been made already

by Alchian (1950), and this is the reason why this contribution is the starting point of

our modeling strategy:

In a static environment, if one improves his position relative to his former

position, then the action taken is better than the former one, and presumably
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one could continue by small increments to advance to a local optimum. . . . [in

a changing environment] there can be no observable comparison of the result

of an action with any other. Comparability of resulting situations is destroyed

by the changing environment . . . the possibility of an individual’s converging

to the optimum activity via a trial-and-error process disappears. (Alchian

1950, p. 219)

2.2 Why social learning in ABMs?

Learning can be modeled at the individual level or the social level (Vriend 2000). In-

dividual learning assumes that each agent is endowed with an evolving set of strategies

that can be interpreted as his search capacities. Social learning envisions each agent as a

single strategy and adaptation intervenes at the population level.

Individual learning can be understood as a trial-and-error process. On its own, it

is certainly slow, as a time step is necessary to evaluate one strategy (unless the agent

makes use of some foregone/“what-if” pay-off functions). By contrast, social learning

allows the agents to parallelize the evaluation of the available strategies, so that the

larger the population, the quicker the evaluation process.4 A quick adaptation process

is most valuable if the environment is itself ever-changing, as argued above in a complex

adaptive system. For this reason, we use social learning, which has to be understood in a

broad sense:

Social learning means all kinds of processes, where agents learn from one

another. Examples for social learning are learning by imitation or learning by

communication. (Riechmann 2002, p. 46)

Social learning in market economies is derived from the “Darwinian” archetype (Dosi

et al. 2003, p. 62). This is also the “as if” interpretation of rational behavior (Friedman

1953): selection between individual strategies operates according to the principle of the
4Allen & Carroll (2001) and Palmer (2012) illustrate this difference within the simple framework of

the buffer-stock consumption rule; see also Salle & Seppecher (2016).
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survival of the fittest, so that the least performing strategies in terms of pay-off are

eliminated from the population, and replaced by the best performing ones. Because of

this Darwinian analogy, social learning in a decentralized economy is often represented

by the means of evolutionary algorithms, such as genetic algorithms (GAs hereafter) –

see Arifovic (2000) for a survey of GA in stylized macro models. GA learning dynamics

is driven by two main forces: innovation that constantly introduces new behaviors in the

system, and selection pressure that duplicates the best performing ones at the expense of

the other.

However, GAs are not exempt of limitations. Their operators do not always find an

easy economic interpretation (Chattoe 1998, Salle & Seppecher 2016). Most importantly,

because they have been initially developed to find optima in complicated static problems

(Holland 1975), they have been used in economics as a way for agents to learn how to max-

imize their profits or utility functions, and the focus has been put on the conditions under

which agents end up coordinating on the optimal state of the model under GA learning

(Arifovic 1990). In these set-ups, the mapping between strategies and pay-off is supposed

to be time-invariant. In face of perpetually evolving environment, GAs perform badly

because they assimilate adaptation with convergence on an equilibrium and individual

coordination (which implies a progressive loss of diversity in the strategy population).

This is even sometimes obtained at the price of ad-hoc mechanisms such as an exogenous

decrease in the innovation force of the algorithm (Arifovic et al. 2013).5 We believe that

this is a major flaw of the macroeconomic learning literature: the neoclassical paradigm

has contributed to reduce learning to convergence on a fixed optimum. In ABMs however,

decentralized learning mechanisms and market selection can be represented without the

use of GAs, precisely because ABMs allow to model directly these mechanisms in a simpler

and more realistic way.6 The purpose of this paper is to provide such a proof-of-concept.
5Admittedly, several modifications have been proposed to make GA more suited to ever-changing

environments (see, e.g., Cobb & Grefenstette (1993)). Classifier systems which combine GA with features
taken from other types of expert systems, such as Artificial Neural Networks, are also somehow effective
in changing environments. However, those algorithms are often complicated and computationally quite
costly. By contrast, the BSP used in this paper is simple, parsimonious, while being flexible in its
implementation, finds an intuitive interpretation and involves a low computational burden.

6As stressed by Dosi & Winter (2003, p. 396), nor are necessary aggregate/centralized interaction
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2.3 The “blanketing shotgun process” (BSP)

We now develop a learning model based on the “blanketing shotgun process” of Alchian

(1950, p. 219) because the BSP consists precisely in constantly and randomly covering

the space of strategies, instead of modeling learning as an individual converging search.

We support the idea that Alchian (1950) can be considered as a major precursor of the

evolutionist/post-Schumpeterian school of thought because he provided a precise descrip-

tion of the co-evolution between market selection and behavior adaptation.

Three operators The BSP encompasses three operators, all inspired by the biological,

Darwinian metaphor (Alchian 1950). First, profits stand for the natural selection process :

firms with positive profits are considered successful and survive, while those with losses

go bankrupt and disappear. We notice that Alchian stresses that positive, not maximal

profits, are the success criterion, in tune already with the satisfycing principle à la Simon

(1955):

Adaptive, imitative, and trial-and-error behavior in the pursuit of “positive

profits” is utilized rather than its sharp contrast, the pursuit of “maximized

profits.” (Alchian 1950, p. 211).

Second, innovation (or mutation or individual experimentation) intervenes at any time,

even in case of positive profits, during a “trial-and-error” process. We follow here Alchian’s

“extreme” hypothesis by modeling “trial-and-error” as a completely random, blind and un-

intended model of exploration (Alchian 1950, p. 211). We do not claim that deliberate

individual learning plays no role in the real world but, following Alchian, we wish to ab-

stract from it in this paper in order to focus on social learning stemming from regulation by

market competition. Therefore, at most, we model individual learning as blind individual

experimentation (“random mutations”) that is on average ineffective (i.e. the average

change in strategies is zero at the population level), see Section 3.2.6 for details. Trial-

and-error processes may for instance represent internal organizational changes, whether

models like the replicator dynamics. We could make a similar point for the heuristic switching model à
la Brock & Hommes (1997).

10



voluntary or not. They may happen even if the firm is making profits (Winter 1964).

This type of innovations maintains the diversity of the population of strategies. We also

refer here to the concept of “persistent search” in Winter (1971):

By “persistent search” is meant a search process that continues indefinitely,

regardless of how satisfactory or unsatisfactory performance may be - although

the search may be slow, sporadic, or both. (Winter 1971, p. 247)

Those innovations constantly introduce heterogeneity in the firms’ debt strategies, which

allows for exploration. This heterogeneity is counteracted by the third operator, imita-

tion, that stands for heredity: operating characteristics (or “routines” in the terminology

of Nelson & Winter (1982)) of successful firms are copied by non-successful firms, i.e.

firms which go bankrupt. The copy of the firm’s strategies is not exact though, so that

innovation is also introduced at that stage.7 Imitation provides the endogenous selection

process which allows for exploitation.

BSP versus GA Even if, at a first glance, the three operators of the BSP seem to

have a lot in common with those of a GA, there are important differences. In a GA,

changes in behavior are triggered by exogenously fixed probabilities. By contrast, in our

implementation of the BSP, the imitation process is endogenously triggered by market

selection pressure in the event of a firm’s bankruptcy. Indeed, the occurrence of imitation

is endogenous, because a firm will only imitate another firm’s strategy if it goes bankrupt.

In the event of bankruptcy, a firm is taken over by a new management team, its operating

characteristics (in this paper, its leverage strategy) disappear and are replaced by the

ones of a randomly chosen firm in the population of surviving firms. Moreover, in GA,

the imitated agents are selected in relation to their relative performances, e.g. through a

tournament or roulette-wheel selection process. By contrast, under the BSP, a bankrupted

firm imitates the strategy of any surviving firm, randomly drawn among the population,
7This can be because the firm’s operating characteristics are not perfectly observable by its competit-

ors, or because the firm’s routines cannot exactly transferred to another firm, or because of control error in
the implementation of the new routine. Alchian (1950, pp. 218-219) uses the concept of “rough-and-ready
imitative rules”
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independently from its relative level of profits.

Furthermore, the BSP and GAs differ in the relative weight that they give to explor-

ation versus exploitation. A weak selective pressure favors exploration and allows for the

survival of poor-performing strategies. Such systems may end of with “many undeveloped

new ideas and too little distinctive competence” (March 1991, p. 1971). Conversely, a

strong selection process exposes the system to the risk of a premature loss of diversity

and homogenization of the strategies on poor ones. The adaptive process is then po-

tentially self-destructive (March 1991, p. 85). Consequently, the ability of a system to

adapt and survive relies heavily on the balance between exploitation and exploration.

As GA-based learning algorithms have been primarily designed to coordinate individual

behaviors on a fixed optimal strategy, they requires a progressive homogenization of the

strategy population, and emphasize adaptation, i.e. exploitation over exploration. By

contrast, the BSP favors exploration, by keeping a perpetual dispersion of the strategies,

and therefore reinforces the adaptability of the system. We argue that this feature is most

convincing in a dynamic market environment in which firms have to compete without

being able to derive an optimal strategy. In Section 4.2.1, we show that this dimension

turns out to be crucial in shaping the emerging macroeconomic dynamics. We now apply

the BSP learning algorithm in a simple macro ABM – Jamel – and raise the question

whether “the market is indeed a good teacher” (Day 1967, p. 303).

3 Learning and adaptation in a simple macro ABM

The first innovation of this paper is to model the firms’ leverage strategies through the

BSP. We therefore introduce capital accumulation and depreciation in the model in the

Jamel model. The size of the firms evolves endogenously as a result of their investment

decisions. We also refine the specification of the banking sector. We intend to provide here

a self-contained presentation of Jamel, and we pay a specific attention to the description

and the explanation of the new features that this paper introduces. We refer the interested

reader to Seppecher & Salle (2015) for an exhaustive discussion and justification of the
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rest of the assumptions of the model. Appendix B provides the pseudo-code of the model

that makes the timing of events together with each equation explicit, and defines each

variable and each parameter. We refer the reader to this appendix for the detail of the

model design. The open source code (in java) as well as an executable demo are available

on the corresponding author’s website at http://p.seppecher.free.fr/jamel/, as we

believe that this is a necessary step for the transparency and credibility of the simulation

results.

3.1 The main features of Jamel

Jamel exhibits two essential features: full decentralization and stock-flow consistency.

Decentralization ensures that aggregates, such as prices and wages, stem from the local

interactions in the markets: there is no planner, no auctioneer and all interactions are

direct and individual. The resulting emerging patterns, such as income distribution, are

therefore endogenous. Stock-flow consistency links all agents’ balance sheets together and

guarantees that micro behaviors are correctly aggregated (Godley & Lavoie 2007). In

Appendix C, we provide the relevant transactions and balance sheet matrices.

The economy is populated by h heterogeneous households (indexed by i = 1, ..., h), f

heterogeneous firms (indexed by j, j = 1, ..., f) and one bank (indexed by b). The

firms produce homogeneous goods by using labor, supplied by households, and fixed

capital, resulting from their investment decisions. Labor and capital are complementary

production factors. Capital depreciates: one unit of fixed capital lasts for an exogenous

and stochastic number of periods. In other words, machines break down at some point and

become irreversibly unproductive. Both households, for consumption purposes, and firms,

for investment purposes, purchase the goods. There is a capital accumulation dynamics

through investment, but no technical progress, as the productivity of capital (parameter

prk hereafter) remains fixed and common to all firms. The bank provides loans to the

firms to finance their production (wage bill and capital investment). The firms and the

bank are assumed to be owned by households, who then receive dividends. One time
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step t may be understood as a month.

3.2 The firms

3.2.1 Production process

Each firm j is endowed with an integer kj,t of fixed capital, that can be understood as its

number of machines. Each machine can be used in combination with at most one unit of

labor (one worker) in every period. One unit of labor increments the production process

of the machine by one step in each period. Each machine needs dp time steps to deliver

an output and, after completion, this output represents dp · prk units of goods, and adds

to the firm’s inventories level, denoted by inj,t.

3.2.2 Quantity decisions

We assume that each firm maintains a fraction 1 − µF of its inventories inj,t as a buffer

to cope with unexpected variations of its demand, and puts in the goods market the

fraction µF . We also assume that the maximum market capacity of each firm is equal

to dm months of production at full capacity: dm · prk · kj,t. Hence, in each period t, each

firm j’s goods supply is given by: max(µF · inj,t, dm · prk · kj,t)

For the sake of parsimony, the maximum market capacity is also the targeted level

of inventories of each firm, i.e inTj,t = dm · prk · kj,t . The firms use the changes in their

inventories as a proxy for the variations in their goods demand: lower-than-targeted (resp.

higher-than-targeted) inventories signal excess demand (resp. lack of demand), and firms

are likely to increase (resp. decrease) their production, and hence their labor demand nTj,t.

The firms then proceed by small, stochastic adjustments in the corresponding direction.

3.2.3 Price setting

Each firm increases (resp. decreases) its price in case of lower-than-targeted (resp. higher-

than-targeted) level of inventories and if it was (resp. was not) able to sell all its supply

during the last period. Each firm proceeds by tâtonnement, and keeps track of a floor
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price P j,t (that can be understood as a a price thought to be lower than the market price),

and a ceiling price P j,t (a price thought to be higher than the market price). The floor

and the ceiling prices constitute the search area for the suitable price [P j,t, P j,t] in case

of price adjustment. This search area is dynamically updated so that it increases when

the firm keeps on adjusting its price in the same direction, and decreases when the firm

reverts its price trend. Therefore, in a strong inflationary environment (resp. deflationary

environment), the firm can quickly increase (resp. decrease) its price, and adapt in order

to “catch-up” with the price level in the economy.

3.2.4 Wage setting

The wage setting procedure encompasses two routines, so as to account for both an

adjustment component to labor market tightness and an “institutional” component, that

undoubtedly plays an essential role in the determination of wage levels. Large firms tend

to be wage makers, and follow the first routine, which is essentially the same mechanism

as the price updating process just described. They adjust their wage offer according to

their observed level of vacancies compared to their targeted one, and their past wage

levels.

However, the vacancy level is indicative only if the firm’s size is large enough, but is

of little informational content for a small firm. For instance, in case of a single employee,

this information is binary: either 0 or 100% of vacancies. Moreover, such a routine is easy

to implement in the case of prices, as firms interact with consumers and/or investors in

the goods market in every period. However, firms go to the labor market only in periods

when they need to renew a contract or increase their workforce, so that the information

that they collect by interacting with households is fragmented, and may be insufficient to

set wages that are compatible with market conditions. We therefore introduce a second

wage setting routine that is akin to a convention or a norm: small firms tend to be wage

takers, and simply use the wage levels prevailing in larger firms of their sector. Copying

another firm’s wage offer can be easily justified as every machine, and hence every worker,

has exactly the same productivity.
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The duration of an offered contract is set to a maximum of dw > 1 periods, and the

wage remains fixed for this whole period.

We shall stress that these pricing rules imply flexible and independently-fixed prices

and wages. The only rigidity stems from the dependence on the previous price and wage

levels. For the purpose of this paper, it appears to us important not to impose exogenous

constraints such as menu costs, or fixed pricing rules, such as a mark-up procedure, on

the firms, in order to let the market exert the only pressure on the firms.

3.2.5 Financial decisions and investment

Payment of dividends At the beginning of each period, the firm distributes to its

owners a share of its equities Ej,t as dividend.

Borrowing The firm may have to obtain loans from the bank. There are four types

of loans. Short-run (non-amortized) loans allow the firm to finance wages if its available

cash-on-hand is not enough to fully cover its expected wage bill. Short-run (amortized)

loans partly finance its investment (see below), and investment is primary financed with

(amortized) long-run loans. The bank also grants short-run loans as overdraft facility in

the case where a firm does not have enough cash-on-hand to cover its monthly repayments

(see Sub-Section 3.3.2 how the loans are granted).

Investment decisions Each firm has a targeted level of equity ET
j,t ≡ (1 − `Tj,t)Aj,t,

where Aj,t denotes the total assets of the firm j in time t, and `Tj,t ∈ [0, 1] its target debt

ratio. Its equity target is the amount of its assets that the firm is not willing to finance

by debt. Each firm compares its equity target to its actual level Ej,t. Only if Ej,t > ET
j,t

will the firm consider to invest.8 If so, the firm computes the size of its investment by

applying an expansion factor, or “greediness” factor β > 1, to its average past sales (in

quantities). Note that this investment objective includes de facto both the renewing of

obsolete, aging machines and the purchase of new ones.
8See e.g. Kalecki (2010), who stresses that the amount of the entrepreneurial equity is the main

limitation to the expansion of a firm.
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The firms willing to invest buy and transform the homogeneous goods into machines.

Firms need vk goods to deliver a machine. Once purchased, we assume that those goods

are transformed into machines immediately and at no cost.9 We assume that each firm uses

the net present value (NPV) analysis to choose the number of machines to purchase.10

The firm randomly samples g sellers in the goods market to estimate the price of the

investment. The discount factor is taken to be equal to the risk-free interest rate of

the bank (see below) discounted by average past inflation, the expected cash-flow of

the project is computed using the firm’s current price and wage, within the limit of

its maximum market capacity.11 The firms reviews the possible investment projects by

starting from m = 0 (i.e. buying 0 machine), then m = 1, etc. until the NPV of the

project m+ 1 is less than the NPV of the project m previously considered. The firm then

chooses the project m, and buys m machines.

As an illustration, Figure 1a shows the pace of investment decisions for an arbitrary

chosen firm in the baseline simulation: only when the effective level of debt lies below its

target can investment be performed, but this is not a sufficient condition though. The

NPV also integrates expected demand, real interest rates and profitability considerations.

Once the firm decides to purchase m new machines, it computes the share `Tj,t of

the total price of the investment Im that is to be financed using a long-run, amortized

loan. For simplification, we assume that the length of a long-run loan equals the average

expected lifetime of the machines dk. If the firm’s cash-on-hand is not enough to cover the

share 1−`Tj,t of the investment, the firm uses an amortized short-run loan. This procedure

ensures that the firm is never constrained by insufficient cash-on-hand whenever it has

decided to invest. The firm’s debt may temporary exceed its debt objective due to the

additional short-run loan, but the gap progressively closes, as illustrated in Figure 1b for

the same, arbitrary chosen firm in the baseline simulation.
9This simplifying assumption avoids complicating the model by introducing a second industrial sector.

An upcoming version of the model does encompass a capital good sector.
10This is a quite standard procedure in corporate finance. However, other types of investment functions

could be easily envisioned, and will be considered in further developments of the model.
11The price and wage could be computed in a more complicated way, such as a trend projection of

past values over the next window periods. However, this would complicated the decision making of firms,
without adding much to the qualitative simulation results.
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Figure 1: An individual example of a firm’s investment and financing behaviors from the
baseline simulation: periods 750–1250

Each new machine adds to the firm’s assets Aj,t at its purchasing price and is uniformly

depreciated by a fraction 1
dk

of its initial value in every period, unless it breaks down before

dk periods, and its value then falls to zero. The fixed capital depreciation on the asset

side of the balance sheet, together with the long run loan amortization on the liability

side, allow the firms to roughly maintain the ratio between long run loans and fixed assets

in line with their debt objective throughout the life of the machines (see Figure 1b).

3.2.6 Firms’ adaptation through the BSP

Firms adapt their indebtedness strategy `Tj,t through the BSP, because it summarizes the

“growth-safety trade-off” in our model: the higher the debt target, the more likely the

investment to be realized and the quicker the market expansion, because the firm needs

less of its own equity to finance it; but the higher the risk of insolvency and bankruptcy.

Innovations The permanent trial-and-error innovation process is completely random,

blind and unintended: in each period, with a given probability probaBSP , firms perturb

their debt objective `Tj,t by a Gaussian noise, with the same standard deviation σBSP as

the one applied during the imitation process (see hereafter).

Bankruptcy and imitation Firms can go out of business in two ways: bankruptcy by

insolvency (when negative profits exhaust their equity, i.e. when their liabilities exceed

their assets), and the loss of productive capacities (in the case where they do not succeed

in investing to renew their aging machines). We simplify here the entry-exit process of
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firms and assume that the failed firm does not disappear. The firm is bailed out by the

bank, its ownership is changed, its management team is fired, and replaced by another

team coming from a more successful firm. Concretely, its debt objective `Tj,t is copied on

a randomly chosen surviving firm. The copy is not exact though, as a (small) Gaussian

noise is introduced (with the same standard deviation σBSP).

3.3 The rest of the model

3.3.1 The households

In the labor market, each household i is endowed with a constant one-unit labor supply and

a reservation wage. If employed, his reservation wage is his current wage. If unemployed,

his reservation wage is adjusted downward as a function of his unemployment duration.

Regarding consumption decisions, the households follow a buffer-stock rule à la Allen

& Carroll (2001) to smooth their consumption in face of unanticipated income variations

by building precautionary savings as deposits at the bank. Households cannot borrow

and consumption is budget-constrained in every period.

3.3.2 The bank

The functioning of the banking system is very stylized. The bank hosts firms and house-

holds deposits at a zero-interest rate, and grants to firms short-run and long-run credits

for exogenously fixed duration, common across firms. For simplification, we assume that

the interest rate is the same for the two types of loans and is equivalent to the risk-free

interest rate. The risk-free interest rate is set by a central bank according to a most sim-

plified Taylor rule that aims to stabilize inflation and takes into account the zero-lower

bound.

At a first step, the bank is fully accommodating, and satisfies all the credit demands.

However, when a firm is not able to pay off a loan in due terms, the firm receives an

overdraft facility at a higher interest rate it + rp. Parameter rp > 0 translates a risk

premium and is assumed to be the same for all firms. If a firm j becomes insolvent, it
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goes bankrupt and the bank starts a foreclosure procedure. The bank first recapitalizes

the failed firm : it computes the targeted value of the failed firm, ET
j,t = κsAj,t and then

erases the corresponding amount of debt: Lj,t−Aj,t +ET
j,t, absorbing this loss through its

own resources. Then the bank attempts to resell the restructured firm at its new book

value Ej,t=ET
j,t, by soliciting households that hold more than a threshold fraction of the

restructured firm value in cash-on-hand, and progressively decreasing this threshold if not

enough funds can be raised. In the case where the capital of the bank is not enough to

recapitalize the bankrupted firm, the bank goes bankrupt and the simulation breaks off.12

The bank also distributes dividends to its owners. We assume that it simply distributes

its excess net worth, if any, compared to its targeted one.

3.3.3 Markets and aggregation

The markets operate through decentralized interactions based on a standard tournament

selection procedure. In the labor market, each firm posts its job offers, and each unem-

ployed household consults g job offers, and selects the one with the highest wage, provided

that this wage is at least as high as its reservation wage. Otherwise, it stays unemployed.

In the goods market, each firm j posts sTj,t goods at a price Pj,t, each household i enters

with its desired level of consumption expenditures, and each investing firm enters with an

investment budget. Firms first meet investor-firms, and then interact with households.13

Each household selects a subset of g firms, and chooses to buy to the cheapest one. These

processes are repeated until one side of the markets is exhausted.

As usual in ABMs, aggregate variables are computed as a straightforward summation

of individual ones.
12We document the frequency of this event in the simulations in Section 4, see Footnote 17. This is due

to the very simplistic design of the banking sector in Jamel, a feature that is intended to be abandoned
in future versions of the model.

13This matching order ensures that the biggest purchasers first enter the market, which appears as
reasonable. However, this order does not matter as all simulations show that households’ rationing in
the goods market remains a rare and negligible event, which would not be realistic otherwise.
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3.4 Simulation protocol

We use a baseline scenario of the model derived from the empirical validation exercise

performed in Seppecher & Salle (2015), but we do not attempt to statistically match

empirical micro- or macroeconomic regularities in this paper.14 We use the model as a

virtual macroeconomic playground to test the simple idea of adaptation through the BSP

learning model. This playground is nevertheless qualitatively realistic in the following im-

portant dimensions for the purpose of our study: it is a complex, monetary and stock-flow

consistent market economy. Regarding the new parameters that have been introduced, the

lifetime dk of the machines is a random draw in N (120, 15), and we set vk = 500, where vk

represents the real cost of an investment/a machine. This positive cost of capital shall be

counter-balanced by a moderate length of production of a machine, to maintain a similar

profit share; see Seppecher (2014) for further discussion. We then set dp = 4. We set the

firms’ greediness at β = 1.2, which translates into a intended 20% increase in productive

capacities. This could appear ambitious at a first glance, but it is actually rather conser-

vative: recall that this investment objective includes both the renewing of aging machines

and the purchase of new ones. Highest values of this parameter only slightly accentuate

the cycles, which is quite expected given the importance of the investment multiplier in

our model. We fix the individual experimentation parameters of the BSP to small values

(probaBSP = σBSP = 0.05), as usual in the learning literature discussed in Section 2. We

set the parameters of the Taylor rule to standard values (φπ = 2 and πT = 2%). We

set δP = 0.04 and δW = 0.02, which implies more flexible prices than wages. This relative

wage rigidity is necessary to dampen, and even interrupt deflationary dynamics along

the bust dynamics, so that the single bank does not go bankrupt (see Seppecher & Salle

(2015) for more detail).15 The risk premium rp on doubtful debt is set to 4% (monthly)

and the recapitalization rate in case of bankruptcy is κs = 20%. The number of wage
14However, we do have checked that our model is able to reproduce the empirical macro regularities of

Seppecher & Salle (2015). This is indeed the case, along with few more stylized facts that we can seek
to reproduce now that our model incorporates investment, e.g. more volatile investment than GDP, and
strong positive correlation between firms’ debt.

15This firstly comes from our very stylized banking system and the absence of government intervention
besides the Taylor rule that is ineffective in deflationary downturns.
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observations is set to g′ = 3. However, the qualitative dynamics of the simulation does

not seem sensitive to these three specific values. Appendix A lists all parameter values

used in the sequel, and the initialization of the model is described in Appendix B.

4 Numerical results

We now give a broad description of the cyclical dynamics that comes out as a robust

pattern of the simulations, and then zoom on one cycle to highlight the mechanisms at

play.

4.1 Overview of the macroeconomic dynamics

Figure 2 reports typical time series of one run of the baseline scenario: demand and

supply in the goods and the labor markets, the corresponding (downward sloping) Phillips

and Beveridge curves, nominal and real interest rates, firms’ debt, the number of firms’

bankruptcies as well as financial fragility.16 We measure financial fragility by the ratio

between the aggregate debt level and the aggregate net profits (i.e. the firms’ profits

minus the interests). It is clear from the dynamics of all aggregate variables displayed

that the macroeconomic dynamics of the model is characterized by a cyclical pattern,

with alternating periods of booms and busts. Figure 2g already reveals the engine of

those cycles: a pro-cyclical leverage. We stress that this is an endogenous product of the

adaptation process, not an ingredient of the model. This explains why financial fragility

and potential output (as measured by the total amount of goods that can be produced by

all the machines in the economy) interact along a strongly circular dynamics (Figure 2h).

Along a business cycle, the simulations show that the economy follows an anti-clockwise

motion in the output/fragility diagram, which indicates that output peaks before financial

fragility; see Stockhammer & Michell (2014) for a detailed discussion. Moreover, Figure 2i

proves that the building up and the collapse of assets of non-financial businesses (firms)

is the main force driving the adaptation of the system as a whole: debt ratios of firms are
16The contribution of each figure to our argumentation will be presented throughout the whole section.
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leading GDP, high debt ratios in the past are associated with high present GDP. In the

sequel, we discuss those dynamics in details.
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Figure 2: Baseline simulation
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Giving a closer look at the emerging cycles, we notice that the boom and the bust

phases differ in terms of both length and magnitude throughout the same simulations. For

instance, in Figure 2, the recession around period 800 is the deepest in this simulation,

while fluctuations between periods 1400 and 1800 are the most dampened. This reflects

the complex nature of the ABM. The timing as well as the size of the downturns are

an endogenous product of the model, and result from the intricate relations between the

collective adaptive behavior of firms and market selection. In the following section, we

unpack the underlying mechanisms.

Before we do so, we shall stress that the observed cycles are a robust feature of our

model, that we observed in all simulations that we have run, albeit irregular and of various

amplitudes.17 In order to show so, Table 1 presents descriptive statistics of the model

outcomes over 30 replications of the baseline scenario with different seeds of the RNG.

The similarity between the replications of the baseline scenario is clear from the low values

of the standard deviations between runs, for all macroeconomic indicators that we report

(see all numbers in brackets). As for the cyclical pattern, it is reflected by the particularly

high values of the standard deviation of these indicators compared to their average values.

For instance, on average between all runs, the GDP growth rate is 0.2%18, but with a

standard deviation of 0.065. This clearly depicts a strong macroeconomic volatility.

The main conclusion that we can draw from our observations is that there seems to be

no such thing as equilibrium or collective optimization. Nevertheless, the system exhibits

some regularities and is sustainable. There is no explosive dynamics. The macroeconomic

system survives and reproduces itself but at the price of a strong volatility. Market

pressure does work as a selection device between a multitude of randomly generated

firms’ behaviors, but the market discipline is “brutal”, not stabilizing, as reflected by the

pace of bankruptcies (Figure 2e).
17 Because the model is randomly initialized and the single bank bears alone all the costs of firms’

losses (see Appendix B), the required adjustments may be too drastic for the single bank to absorb firms’
losses, and the simulation may break off at the beginning. We observe that this is the case in roughly
15% of the simulations. We do not report those runs in Table 1. However, once the economy survives
this take-off period, we have always observed the same cyclical aggregate pattern.

18Recall that the model does not encompass any technological progress nor population changes. An
average growth rate close to zero is therefore an expected outcome.
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mean std. dev. maximum minimum
GDP growth rate 0.00226 0.06493 0.12335 -0.21521

(0.00092) (0.0028) (0.01408) (0.01502)
Inflation rate 0.03852 0.04709 0.15261 -0.06213

(0.00547) (0.00283) (0.01128) (0.0143)
Bankruptcy rate 0.0075 0.01054 0.0628 0

(0.00065) (0.00122) (0.01057) (0)
Financial fragility 2.18919 1.74851 12.53134 0.96359

(0.05951) (0.26648) (3.26673) (0.01974)
Firms’ leverage 0.5976 0.0551 0.73687 0.49978

(0.00621) (0.00334) (0.00969) (0.01391)
Investment growth rate 0.11017 0.47834 2.99064 -0.60634

(0.01198) (0.05258) (0.81132) (0.06073)

Table 1: Average (and standard deviation between brackets) computed over all periods
(discarding the first 500 periods) over 30 replications of the baseline scenario.

4.2 Analysis of a typical cycle

In this section, we zoom on a typical cycle (between periods 750 and 1250) of the baseline

simulation displayed in Figure 2.

4.2.1 Firms’ adaptation

We show that the very core mechanism at play in generating the cycles is the alternating

of two phenomena: a sustained increase trend in firms’ indebtedness, followed by a brutal

correction through a chain of bankruptcies. This is particularly clear from the evolution

of the targeted debt ratio of firms weighted by their assets (blue curve in Figure 2g). To

provide further insights into firms’ behavior over a business cycle, Figure 3 reports the

debt objectives `T versus the sizes of the firms (in number of machines) at six different

phases of a cycle, in the following order: the start of the downturn, the bust, the bottom

of the bust, the beginning of the recovery, the boom and the top of the boom.

Figure 3 sheds light on the growth-safety trade-off that the firms face: the higher the

financial risk (the further on the right side on the scatterplots of Figure 3), the quicker

the expansion of the firms (the further up on these same graphs). As a consequence, in

the boom dynamics (Figures 3e-3f), we observe a dispersion towards the top-right corner
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of the scatterplots (heavy debt and big size). This evolution is progressive, as a result

of the small random but perpetual innovations in the adaptation process that determines

the investment behavior of the firms. The “skittish” behaviors, that correspond to low

debt strategies, run the risk of being eliminated if they are not enough to even renew

the aging and obsolete machines, which would then drive the productive capacities to

zero (i.e. towards the origin on the scatterplots). In this case, the firms go bankrupt

and imitate another surviving firm. However, the top right corners of those plots are

not densely populated because this area is competitive and represents risky behaviors:

only a few firms will end up cornering the market, but they all run the risk of unsold

production, which would lead to a drop in profits and a risk of insolvency. The riskiness

of this behavior is clear from the proportion of speculative, and even Ponzi firms in

the top right corner of the figures. This risk is also illustrated by the evolution of firms’

positions on the scatterplots throughout the cycles. Once the downturn starts, we observe

a clear contraction of the firms towards the bottom of the scatterplot (see Figures 3a-

3c). This tightening phenomenon is the result of a twofold motion: the bankruptcies of

the most indebted firms that massively and brutally drive out non-cautious high debt

strategies (movements towards the left of the plot); and the decrease in capital due to

the non-renewal of depreciating productive capacities (movement towards the bottom).

As it is clear by comparing Figures 3f and 3c, economic crises endogenously produce an

homogenization of firms’ behavior because they first affect the few, but biggest firms which

grew by heavily indebtedness (see how the population of speculative firms starts growing

among the biggest firms first in Figure 3a). In the wake of the bust, the speculative,

and even Ponzi-types of financing seem to affect every firm, not only the biggest ones

(Figure 3b). Once the recovery starts (Figure 3d), indebtedness starts increasing again,

and few firms start growing and cornering the market again (Figure 3e). This process

repeats itself along each cycle (to see this, notice the striking similarity between Figures 3a

and 3e).

Importantly, the market selection through bankruptcies along the bust dynamics is

brutal (movements towards the bottom left of the scatterplots), and much quicker than
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(a) t = 1000: start of the downturn
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(b) t = 1050: bust dynamics
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(c) t = 1100: bottom of the bust
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(d) t = 1150: start of the recovery
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(e) t = 1200: boom dynamics
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(f) t = 1250: top of the boom

Figure 3: Firms’ size distribution against debt behavior in six phases of a business cycle.
Scatterplots report, ∀j, `Tj (debt target, x-axis) versus kj (size as the number of machines,
y-axis). Colors denote income-debt relations, according to the classification and termin-
ology of Minsky (1986): blue for hedge, yellow for speculative, red for Ponzi-financing
firms.

the pace of the small-step innovations that progressively drive the system towards an

increasing financial fragility along the boom dynamics (i.e. movements towards the top

right). This difference explains why recoveries are slow and crises are severe. Deep crises

as a brutal disciplining device have been part of the evolutionary economics ideas for a

long time:

Severe depression eliminates large numbers of firms from the economy, but

behavior patterns that would be viable under more normal conditions may be

disproportionately represented in the casualty list. At the same time, behavior

patterns that were in the process of disappearing under more normal conditions

may suddenly prove viable. . . (Winter 1964, p. 266)

Our ABM allows for a detailed and formal analysis of this mechanism in a micro-founded

macro model.
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Figure 4: Robustness check of the pattern in Figure 3 along different cycles

As a final exercise on the firms’ side, we verify the robustness of those observations

across different cycles of the baseline simulation. We use the slope of the regression line

in the scatterplots of Figure 3 (sizes vis-à-vis debt targets) and its dynamics over the

cycles as a synthetic indicator.19 Figure 4 indicates a strongly pro-cyclical and coincident

pattern: the slope is high at the top of the bubbles, then decreasing during the bust and

finally increasing up to the top of the boom.

From these observations, we draw the following conclusions. The adaptive model

provided by the BSP collectively solves the growth-safety trade-off faced by the firms

by eliminating the investment behaviors that are incompatible with current market con-

ditions. The BSP ever creates heterogeneity in behaviors, with a strong emphasis on

exploration. This heterogeneity is not random but is characterized by a salient emerging

and recurring structure. This structure is endogenous, relatively stable from one cycle

to the next, but importantly, dynamic: market conditions evolve along the cycle, and

behaviors that were judged virtuous in a given phase of the cycle (audacious behavior in

the boom) turn out to be vicious in another (during a bust). This heterogeneity provides

to the system as a whole its ability to react and adapt. This simple simulation exercise

shows that there is no such thing as an efficient or optimal behavior in this complex ad-

aptive system, but the characterization of successful behaviors itself constantly evolves as

a result of the market conditions that these behaviors contribute to shape.20 We now focus

on those aggregate market conditions.
19We are grateful to an anonymous referee for suggesting this exercise.
20Brock & Hommes (1998) make a similar point by showing that “non-rational”, trend-chasing traders

are not driven out by fundamental ones in a financial market model; but their relative share co-evolve in
a non-linear way with the dynamics of the market that can display, as a result, very complicated, and
even chaotic dynamics. See also Hommes (2006) for a related discussion.
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Figure 5: Zoom on one cycle of the baseline simulation: periods 750–1250

4.2.2 Macroeconomic dynamics

Figure 5 zooms on the cycle between period 750 and 1250 of the baseline simulation.On

Figure 5d, the blue curve that depicts the average debt ratio weighted by assets moves

faster than the red one, that reports the simple arithmetic average over firms. This reflects

the fact that during a boom, the aggregate amount of debt grows mostly as a result of

few, big firms with high leverage strategies. We now explain how this financial instability

interacts with the goods demand, and provokes the boom and bust cycles.

Along the boom phase of the cycle, investment feeds the demand for goods, which

calls in turn for more expansion in market capacities (Figure 5a). This optimistic outlook

of firms is self-reinforcing because it is followed by the bank, which is fully accommod-

ating in our model. However, the balance sheet of the firms also becomes more fragile
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(Figure 5d), and the lending interest rates rise in the boom phase21 (Figure 5c). This

rise generates a negative feedback between firms’ financial fragility, investment and goods

demand that puts an end to this boom dynamics. Larger and larger shares of firms’ cash-

flow are absorbed by debt services, especially for the biggest, and therefore more indebted,

firms. At some point, this mechanism leads to a drop in profits and investment (see the

evolution of potential output on Figure 5b), a rise in bankruptcies (Figure 5b) and a rise

in unemployment results (Figure 5a). A series of bankruptcies accelerates the imitation

process through the BSP, bankrupted firms imitate the debt strategies of surviving firms.

Those strategies correspond to more cautious debt behavior, as explained in Section 4.2.1.

However, a phenomenon akin to a Fischerian debt-deflation sets in: we observe a sharp

increase in indebtedness precisely when firms choose to deleverage (Figure 5d).22

We can also look at the building up and collapse of assets and the interaction with

the goods demand through the balance sheets of the agents. Along the bust phase, firms’

fixed capital drops, which reflects the drop in productive capacities stemming from the

non-renewal of depreciated capital (Figure 5e). However, firms’ circulating capital (which

consists of the sum of finished and unfinished goods, and therefore measures firms’ in-

ventories) only drops with a lag and less dramatically than fixed capital, which indicates

excess inventories. Figure 5e also illustrates the liabilities side of firms’ balance sheets

along the bust dynamics: the dramatic increase in inventories translates into firms’ fin-

ancial difficulties, and a strong rise in overdraft facilities/short-run loans (even above the

amount of circulating capital). Figure 5f synthesizes the categorization of firms into the

three Minskian financing types (hedge, speculative and Ponzi, see the blue curve that rep-

resents the ratio of revenues over debt services), and indicates the degradation of firms’

solvency at the macroeconomic level.

Tables 2 and 3 allow for a similar reading. Those tables report the balance sheet
21In our model, this raise stems from the Taylor rule that increases nominal rates along the boom.

Another explanation is the increase in the bank’s risk premium in an attempt to control for the increasing
borrowers’ financial fragility (Stockhammer & Michell 2014). For simplicity, we abstract here from
modeling endogenous risk premiums.

22As explained in Seppecher & Salle (2015), the relative wage rigidity that we assume, see Section 3.4,
is the driving force that brings back the system on an increasing trend.
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Households Firms Banks Σ

Work In Process 828, 809.29 828, 809.29
Inventories 766, 196.57 766, 196.57

Fixed Capital 1, 526, 549.43 1, 526, 549.43
Deposits 1, 413, 349.64 855, 523.67 -2, 268, 873.31 0

Short Term Loans -1, 672, 184.92 1, 672, 184.92 0
Long Term Loans -875, 731.31 875, 731.31 0

Equities 1, 708, 205.65 -1, 429, 162.72 -279, 042.92 0

Σ 3, 121, 555.28 0 0 3, 121, 555.28

Table 2: Balance sheet matrix, period 1000 (in real terms)

matrix just before (in period t = 1000) and right after (t = 1050) the downturn (see

Appendix C how these matrices are constructed). Within these 50 periods, the overall

value of the net worth (i.e. the sum of deposits and equities held by households) has lost

30% of its real value. This loss stems from the collapse in investment which implies that

depreciated capital is not replaced: the firms’ capital represent almost half of the overall

net worth before the downturn, and but only account for a quarter 50 periods later. By

contrast, on the asset side of the firms, inventories represent 25% of the overall net worth

in t = 1000, and more than 40% in t = 1050, which reflects the drop in goods demand

and firms’ sales. On the liabilities side of the firms, the drop in investment shows up in

the drop of long-run loans (i.e. the loans that are only intended to finance investment),

from 28 to 14% of the overall net worth. On the contrary, the share of the short-run loans

increases from 54 to more than 70%, which translates the firms’ liquidity problems as a

result of the drop in their sales. This simple exercise stresses the usefulness of stock-flow

consistency for macroeconomic modeling. SFC modeling provides both a disciplinary

device in the design of the financial behaviors and accounting relations between sectors,

and an analysis tool to dissect dynamics emerging from the simulations.

We conclude that, in our ABM, the process of collective adaptation through the market

selection pressure yields cyclical macroeconomic dynamics that look more in line with the

“financial instability” hypothesis (Minsky 1986) than with the “as-if” hypothesis (Friedman

1953), which predicts a stabilization of the system around a socially desirable steady state
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Households Firms Banks Σ

Work In Process 700, 091.60 700, 091.60
Inventories 878, 428.60 878, 428.60

Fixed Capital 586, 028.52 586, 028.52
Deposits 1, 039, 460.42 603, 749.48 -1, 643, 209.89 0

Short Term Loans -1, 529, 421.24 1, 529, 421.24 0
Long Term Loans -312, 271.74 312, 271.74 0

Equities 1, 125, 088.31 -926, 605.22 -198, 483.09 0

Σ 2, 164, 548.73 0 0 2, 164, 548.73

Table 3: Balance sheet matrix, period 1050 (in real terms)

by driving out inefficient behaviors.

5 Conclusions

Our model touches upon two, somehow distinct, research areas – learning and agent-based

modeling. This section first makes the point that these areas should be more closely

linked together in order to improve macroeconomic modeling and our understanding of

macroeconomic dynamics.

Our exercise shows the interest of modeling learning, not as a process intended to

converge towards a particular steady state, but as an ever-changing, ever-adapting process.

In an adaptive complex environment, like the simple macroeconomy modeled in Section 3,

and probably like the real world, there is no such thing as an “optimal” or efficient behavior.

On the contrary, the characterization of successful behaviors itself constantly evolves as

a result of the market conditions that these behaviors contribute to shape. To put our

results in parallel with a quote from March (1991, p. 73), in our model, there is not a

single efficient way for the firms of addressing the growth-safety trade-off:

• “What is good in the long run is not always good in the short run”: a cautious

financial strategy (limiting the indebtedness of the firm) is desirable in a long-run

perspective because these firms are more resilient to severe downturns, but impeding

in the short-run, because it restrains their expansion and make them loose market

shares in favor of more audacious firms.
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• “What is good at a particular historical moment is not always good at another

time”: high leverage strategies allow a virtuous expansion circle to set in in periods

of output growth, while they turn into a vicious circle in downturns, when firms

unsuccessfully try to deleverage.23

• “What is good for one part of an organization is not always good for another part”:

while the fast growth of capital is desirable from the production division viewpoint,

it puts the financial department at risk by deteriorating the capital ratio of the firm.

• “What is good for an organization is not always good for a larger social system of

which it is a part.”: in the wake of a downturn, bankrupted firms tend to imitate

deleveraging strategies, hence downsizing their investment to improve their financial

situation and avoid insolvency, but this behavior has in turn dramatic effects on the

macroeconomic system as a whole because it amplifies and deepens the recession.

We conclude our formal and detailed analysis of learning and adaptation mechanisms

with a conceptual definition of an economic crisis. Our model shows how an economic

downturn or crisis endogenously stems from the adaptation and the failure of adaptation

of the agents in the system.24 As shown by our model, a crisis corresponds to the sudden

moment when behaviors that were judged by the market successful and compatible with

the environment suddenly appear unsuited and unsustainable from the firms’ financial

perspective, and for the financial system as a whole. In other words, a crisis is the moment

when individual behaviors suddenly turn out to be incompatible with the macroeconomic

environment, while the two had been reinforcing each other previously. Stated differently,

a crisis arises as a sudden, brutal event, when the pace of change of the economic context

becomes faster than the adaptation capacities of the agents that populate it.

The occurrence of a crisis results therefore from the combination of the bounded ra-

tionality hypothesis and an ever-changing complex environment. Bounded rationality
23On the deleveraging crisis and debt-deflation phenomenon, see notably Eggertsson & Krugman (2012).

See Seppecher & Salle (2015) for an analysis within a simpler version of the Jamel model.
24On the phenomenon of economic crises as coordination failures, see also Clower (1965), Cooper &

John (1988), Howitt (2001), Gaffeo et al. (2008), Delli Gatti et al. (2008, 2010).
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implies that adaptation of behaviors is gradual and inertial (Winter 1964). If the environ-

ment evolves only slowly, or has even a constant structure, agents are likely to be able to

adapt, and crises are not likely to be an inherent, endogenous feature of the system. On

the other extreme, if agents are fully rational and fully informed, so that they are able to

be infinitely far-sighted, they can adapt instantaneously to any new condition, and crises

could only result from exogenous shocks.

The interpretation of crises as brutal disconnections between individual behaviors

and aggregate outcomes and reversal between what used to appear virtuous and what

used to be considered as vicious have recently found some revival interests, in the wake

of the Great Recession (Eggertsson & Krugman 2012, Blanchard 2014, Battiston et al.

2016). Modeling such a transition is a challenge though, and our paper shows how ABM

can provide a micro-founded, fully decentralized, stock-flow consistent and endogenous

approach to this question. The general interdependence of agents’ balance-sheets and

the interconnection between the financial and the real sectors provided by the stock-flow

consistency constitute an essential channel through which imbalances can propagate and

crises can emerge as contagion phenomena. Genuine behavioral heterogeneity, together

with full decentralization, produces the resulting co-evolution between micro behaviors

and macro outcomes, and the endogenous emergence of this type of crises.

Finally, we conclude this paper by pointing towards an interesting extension of our

work. In our model, the BSP mechanism only operates on the demand side of the credit

market. Banks are actually subject to the same type of trade-off as the firms: a too

prudent strategy can lead the bank to lose customers and profit opportunities along the

boom, whereas a too aggressive strategy may expose the bank to undue risks. In a version

of Jamel where the banking sector is disaggregated, credit supply strategies could also

evolve under a BSP mechanism. The concomitant selection processes operating on the

demand and supply side of the credit market may reinforce the boom and bust dynamics

explained in this paper, but they might also dampen it. This is a promising research

question that we leave for future work.
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A Parameter values

Parameter Description Baseline value
Households

h number 6,000
dr wage resistance 12 (months)
g size of the market selection (same for firms) 10

window memory (same for firms) 12 (months)
ηH wage adjustment parameter 0.05
κS targeted savings rate 0.2 (share)
µH rate of consumption of excess savings 0.5

Firms
f number 400
dk lifetime of the machines N (120, 15) (months)
dl short-run credit length 12 (months)
dL long-run credit length (= average machine lifetime) 120 (months)
dm market capacity,

also targeted proportion of inventories
2 (months of production)

dp length of the production process 4 (months)
dw length of employment contracts U [6, 36] (months)
g′ number of wage observations 3
prk productivity of the machines 100 (units)
vk value of a new machine in real terms

(number of goods to produce a machine)
500 (units)

β greediness in investment 1.2
δP price flexibility parameter 0.04
δW wage flexibility parameter 0.02
ρT targeted level of vacancies 0.03
µF proportion of goods to be sold 0.5
κd maximum share of equity to be distribute as

dividends
0.2

νF production flexibility parameter 0.1
σBSP size of individual innovations 0.05

probaBSP probability of individual innovations 0.05

Bank
κTb capital adequacy ratio target 0.1
rp risk premium on doubtful debt 0.04 (monthly)
κs recapitalization rate (for insolvent firms) 0.2
φπ reaction to inflation (Taylor rule) 2
πT inflation target 0.02/12 (monthly)

Model
dS length of the simulations 3,000 (months)

Table 4: Baseline scenario. Random draws are performed at each period and for each
agent.
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B Pseudo-code of Jamel
Initialization :

Variable Description Initial value
(t = 0)

Household i
Ci,t actual level of consumption expenditures 0
CTi,t desired level of consumption expenditures (consumption budget) 0
dui,t unemployment duration 0
FD i,t dividends received 0
Mi,t cash on hand (bank deposit held) 0
Wi,t wage received 0
W r
i,t reservation wage 0

Yi,t monetary income (=Wi,t+FD i,t) 0
Firm j

Aj,t total assets (inventories, fixed capital and money) 0
Ej,t shareholder’s equity (= Aj,t − Lj,t) 0
ETj,t target equity (= (1− `Tj,t)Aj,t) 0
Fj,t net profits (= Ej,t − Ej,t−1 + FDj,t) 0
FDj,t dividends paid to the owners 0
ij,t new fixed capital goods (investment) in number of machines 0
Ij,t new fixed capital goods (investment) in nominal terms 0
inj,t inventories (finished goods) in real terms 0
inTj,t inventories target in real terms

= dm · prk · kj,t
0

kj,t number of machines, maximum number of jobs 15
Lj,t total liabilities (bank loans) 0
`Tj,t target debt ratio ↪→ U(0, 0.9)
Mj,t cash on hand (money deposit held) 0
nj,t actual workforce, actual number of employees 0
nTj,t demand for labour, workforce target 12
Pj,t unit price of goods supplied 0
sj,t actual sales in real terms 0
sej,t sales expansion objective in real terms 0
sTj,t goods supply (targeted sales) in real terms

= max(µF · inj,t, dm · prk · kj,t)
0

Wj,t the wage offered in nominal terms 50
Bank

Ab,t total assets (= total outstanding loans to the firms) 0
Eb,t shareholder’s equity (= Ab,t − Lb,t) 0
ETb,t capital requirement

= κTb Ab,t

0

FDb,t dividends paid to the owners of the bank 0
Lb,t total liabilities (= sum of deposits held by households and firms) 0
it rate of interest on bank loans (nominal)

= max
(
φπ(πt − πT ), 0

) 0

rt discount rate (real rate of interest on bank loans)
= it − πt

0

Equities (Ej,0) of each firm and of the bank are divided
in ten equal shares, and given to randomly drawn households.

Macroeconomic public data
πt price inflation rate 0

40



Execution In each period t, t = 1, ..., dS:

1. (Interest rate adjustment:)

it = max
(
φπ(πt − πT ), 0

)
(1)

where πt is the price inflation computed over past window periods, φπ and πT are
parameters.

2. (Fixed capital stock depreciation:) Each machine m of each firm j is depre-
ciated by Ij,m

dk
where Ij,m, is the initial value of the machine paid by j and dk the

expected life time of the machine (in months, straight-line depreciation method).

3. (Payment of dividends:)

Each firm j i) computes F̃j,t, its average past net profits Fj over window periods,
ii) computes the share of net profits to be distributed as Ej,t

ET
j,t
, and iii) distributes to

its owners the amount FD j,t = min
(
Ej,t

ET
j,t
F̃j,t, κdEj,t

)
, in proportion to their relative

share holding.

The bank distributes FDB,t = max(EB,t − ET
B,t, 0)

Updating of the firms’ and the bank’s balance sheets.

4. (Price:)

if (sj,t−1 = sTj,t−1 and inj,t < inTj,t)


P j,t = P j,t−1(1 + δP )
P j,t = Pj,t−1
Pj,t ↪→ U(P j,t, P j,t)

else if (sj,t−1 < sTj,t−1 and inj,t > inTj,t)


P j,t = Pj,t−1
P j,t = P j,t−1(1− δP )

Pj,t ↪→ U(P j,t, P j,t)

else

 P j,t = P j,t−1(1 + δP )
P j,t = P j,t−1(1− δP )
Pt,j = Pj,t−1

(2)

with :

• P j,t, the ceiling price,

• P j,t, the floor price.

5. (Wage offer:) Each firm j observes a random sample of g′ other firms. If the
observed sample contains a firm k such that kk,t > kj,t, then:

Wj,t = Wk,t

W j,t = Wj,t(1 + δW )
W j,t = Wj,t(1− δW )

(3)
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else:
if (ρj,t−1 > ρT )

{
W j,t = W j,t−1(1 + δW )
W j,t = Wj,t−1

else
{
W j,t = Wj,t−1
W j,t = W j,t−1(1− δW )

and then Wj,t ↪→ U(W j,t,W j,t)

(4)

with:

• ρj,t−1 =
nT
j,t−1−ni,t−1

nT
j,t−1

, the vacancy rate previously observed by the firm,

• W j,t, the ceiling wage,
• W j,t, the floor wage.

6. (Labor demand:) nTj,t (within the lower bound 0 and the upper bound kj,t):

nTj,t = (1 + δhj,t)n
T
j,t−1 (5)

where nTj,t−1 is the labor demand of the firm in period t − 1, and δj,t is the size of
the adjustment, computed as:

δhj,t =


αj,tνF if 0 ≤ αj,tβj,t <

inT
j,t−inj,t

inT
j,t

,

−αj,tνF if 0 ≤ αj,tβj,t <
inj,t−inT

j,t

inT
j,t

,

0 else.

(6)

with αj,t, βj,t ↪→ U(0, 1) and νF > 0.{
if nj,t > nTj,t fires nj,t − nTj,t (on a last-hired-first-fired basis)
else posts nTj,t − nj,t job offers. (7)

7. (Financing of current assets): according to the existing job contracts, the work-
force target nTj,t, and the new wage rate offered on the labor market Wj,t:

• computes the anticipated wage bill WBT
j,t;

• borrows max(WBT
j,t −Mj,t, 0) (non-amortized short-term loan).

• Updating of the firms’ and the bank’s balance sheets.

8. (Reservation wages:)
Each household i updates his reservation wage W r

i,t.

• If i is unemployed:
W r
i,t = W r

i,t−1(1− δwi,t) (8)

where δwi,t ≥ 0 is the size of the downward adjustment, and is computed as:

δwi,t =

{
βi,t · ηH if αi,t <

dui,t
dr

0 else.
(9)
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where αi,t, βi,t are U(0, 1), and ηH > 0 and dw ≥ 1 are parameters.

• Else:
W r
i,t = Wi,t−1 (10)

where Wi,t−1 is the wage earned by household i at the previous period t− 1.

9. (Labor market :)

Each unemployed household i) consults a random sample of g job offers; ii) selects
the job offer with the highest offered wage, denoted by Wj,t; iii) if Wj,t >= W r

i,t,
accepts the job for a duration of dw months; else, remains unemployed for the
period t.

10. (Production): Each firm distributes uniformly the hired workers on its machines
(one per machine). Once a production process of a machine is completed (after
dpiterations by a worker), it adds prkgoods to the firm’s inventories inj,t, whose
value is then incremented by the production costs of prkgoods.

This process updates i) firms’ wage bills and vacancy rates, ii) production levels,
and iii) households’ cash-on-hand Mi,t = Wi,t + FD i,t + Mi,t−1 (where Wi,t + FD i,t

represents its income flow, made of FD i,t, the dividends that household imay receive
if it owns shares in the bank or a firm, see Step 1., and Wi,t its labor income,
and Mi,t−1 is its cash-on-hand transferred from t− 1).

11. (Goods supply:) Each firm j puts sTj,t goods in the goods market:

sTj,t = max(µF · inj,t, dm · prk · kj,t) (11)

12. (Individual experimentation :) With a probability probaBSP , for each firm j, `j,t+1 ↪→
N (0, σBSP), else `j,t,+1 = `j,t.

13. (Investment decision):

(a) selects a random sample of g suppliers (other firms);

(b) if (kj,t = 0) buys m = 1 new machine, for a value Ij,t;

(c) else if (ET
j,t > Ej,t):

i. computes the vector of the prices of each investment project Im (m the
number of new machines to be bought), with m = 0, 1, 2, ...;

ii. computes s̃j,t, average of the sales sj over the past window periods;
iii. computes sej,t = β · s̃j,t, its sales expansion objective;
iv. given its sales expansion objective sej,t, the expected life time of a machine

dk, the current price Pj,t, the current wageWj,t, the discount factor r=it−π̃t
(π̃t is the average past inflation computed over the window last periods),
and the price Im of each investment project m, computes the net present
value NPVm of each investment project m:

NPVm ≡
CFm

rt

(
1− 1

rt(1 + rt)d
k

)
− Im
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where CFm is the expected cash-flow of the project:

CFm = min(sej,t,m · prk) · Pj,t −m ·Wj,t

where the min term ensures that the future sales cannot exceed the max-
imum market capacity of the firms.

v. chooses the project m for which NPVm+1 < NPVm, for a value Ij,t.
vi. adds Im

m
per new machine to its assets.

14. (Financing of fixed assets):

(a) borrows (amortized long-run loan) the amount: `Tj,tIj,t;

(b) borrows (amortized short-run loan) the amount: max((1− `Tj,t)Ij,t −Mj,t, 0);

15. (Saving/consumption plan:) Each household computes

(a) his average monthly income flow over the last window periods, denoted by Ỹi,t;

(b) his cash-on-hand target MT
i,t = κS · Ỹi,t;

(c) is targeted consumption expenditures as:

CT
i,t =

{
(1− κS)Ỹi,t if Mi,t ≤MT

i,t

Ỹi,t + µH(Mi,t −MT
i,t) else.

(12)

where µH ≥ 0 is a parameter. The budget constraint always gives Ci,t ≤
min(CT

i,t,Mi,t).

16. (Goods market :):

(a) matches first the firms’ demand, then the households’ demand with the firms’
supply;

(b) goods bought by firms are transformed in new machines, while goods bought
by households are consumed;

(c) updates the firms’ inventories inj,t, number of machines kj,t, assets Aj,t and
equities Ej,t, and the households’ remaining cash-on-hand si,t.

17. (Loans :) The firms pay back part of their loans and the interests to the bank.
Interest is due at each period. For an amortized loan, principal is repaid by equal
fractions at each period, while for a non-amortized loan, the total principal is due a
the term. If the cash-on-handMj,t of a firm j cannot fully cover the debt repayments,
it benefits of an overdraft facility, ie a new short term loan at an higher rate including
the risk premium of the bank (it + rp).

18. (Foreclosure :) If a firm has become insolvent (Aj,t < Lj,t), the bank starts the
foreclosure procedure, a new `Tj,t is copied from a surviving firm (+N (0, σBSP)), the
firm is recapitalized up to Ej,t = κsAj,t, and new households become owners as
follows: all households that have at least 20% of Ej,t as cash-on-hand are solicited
for at most 50% of their wealth, and the firm’s shares are distributed in proportion
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to their contribution. If the collected cash-on-hand is lower than Ej,t, the selection
threshold is decreased to 10% of Ej,t. If the cash-on-hand on the solicited households
is still not enough, the threshold is decreased to 4%, and then 2%. If this is still not
enough to buy all the shares of the firm, the price of the shares is decreased by 10%
until enough cash-on-hand can be collected. In case of more than 10 decreases, the
simulation would stop.

19. This process starts all over again for a given length of dSperiods.
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C Stock- flow consistency

E Value of equities held by households
Eb Value of equities issued by banks
Ef Value of equities issued by firms
IN Inventories of finished goods, at production cost
K Value of fixed capital stock
L Loans supplied by banks
Lf Loans to firms
M Money deposits supplied by banks
Mf Money deposits held by firms
Mh Money deposits held by households
NW Net worth of households
WIP Work in process, at production cost

Table 5: Stocks

Households Firms Banks Σ

Work In Process WIP WIP
Inventories IN IN
Fixed Capital K K
Deposits Mh Mf −M 0
Loans −Lf L 0
Equities E −Ef −Eb 0

Balance −NW 0 0 −NW
Σ 0 0 0 0

Table 6: Balance sheet matrix
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AF Amortization funds
C Consumption goods sold by firms to households
CAP Recapitalizations
Fb Bank profits
Ff Entrepreneurial profits
FD b Dividends of banks
FDf Dividends of firms
I New fixed capital goods
INT Interest payments paid by firms
Lback Repaid loans
Lnew New loans
Lnp Non performing loans
PROD New finished goods valued at cost
S Value of sales, at historic costs
WB Wages paid to households

Table 7: Flows
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