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Abstract

Expectations play a major role in macroeconomic dynamics, especially regarding
the conduct of monetary policy. Yet, modelling the interplay between communi-
cation, expectations and aggregate outcomes remains a challenging task, mainly
because this requires to deviate from the paradigm of rational expectations and
perfect information. While agent-based macro models allow for such a deviation,
their representation of expectations dynamics often remains simplistic. This paper
introduces an expectation formation model which allows to integrate a wide range
of information disclosed by central banks. This expectation model is then integrated
to the macroeconomic ABM developed in Salle et al. 2013 – [Economic Modelling,
2013, 34, 114-128], and yields aggregate results strongly in line with empirical ev-
idence. In particular, we find that i) opacity is always sub-optimal, giving rise to
the so-called opacity bias, ii) communication loosens the trade-off between the two
objectives of monetary policy, and iii) forward guidance acts as a partial substitute
for policy actions, and softens the optimal policy responses. This expectation model
appears therefore promising to develop macroeconomic agent-based models.
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Highlights
• On the one hand, rational expectations often suppose too sophisticated knowl-

edge and abilities from the agents.

• On the other hand, agent-based models (ABMs) assume simplistic expectation
processes.

• This paper introduces an artificial neural network-based expectation model
which is applied in a macroeconomic ABM.

• The resulting interplay between central bank’s communication, monetary pol-
icy, agents’ inflation expectations and macroeconomic stabilization is in line
with empirical and theoretical works.
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1 Introduction

Rational expectations (hereafter, RE) are not a non-controversial assumption in

the economic literature. RE imply that agents know the form of the underlying

economic model, and are able to process all the relevant information, so that their

expectations on average coincide with the true conditional law of motion of the

economic variables. An extensive literature documents the lack of plausibility of

such a strong assumption by advocating information and cognitive limitations of

agents in their real decision-making.1 Furthermore, RE cannot be transposed as

such in agent-based models (hereafter ABMs), because these models are highly non-

linear, and imply that agents are not able to see the whole picture of the economy

in which they evolve and make decisions.2 Consequently, the underlying macro-

economic model is not available to the agents.

The lack of alternatives to RE within such frameworks has forced the state-of-

the-art agent-based literature to stick to the use of simplistic assumptions concerning

agents’ expectations. For instance, Dosi et al. (2010, 2013) assume that firms form

naive expectations about their future demand. Oeffner (2008) makes the same as-

sumption concerning inflation expectations. Ashraf & Howitt (2012) assume that

they are simply equal to the central bank’s inflation target. While RE are proba-

bly too sophisticated to model real agents’ expectations, such simple assumptions

are obviously too limited to be realistic neither. Some other ABMs even abstract

from modelling explicitly the way agents form expectations, and assume that they

proceed by simple adjustments of their economic decision variables. This is the

case, inter alia, in Seppecher (2012) and Lengnick (2013). However, expectations

play a major role in economic dynamics. The dynamics of expectations play a

central role in the New Keynesian models, which constitute with no doubt the cur-

rent paradigm in macro-modelling (see Woodford (2003)). Furthermore, whether

agents have RE, or whether they hold homogeneous or heterogeneous expectations

turn out to dramatically influence macroeconomic dynamics, and the resulting pol-

icy recommendations.3 Neglecting the expectation dynamics appears therefore as

a major flaw of existing (macro)-economic ABMs. This is all the more disappoint-

1See, notably, evidence collected in Simon (1996), and Hommes (2011) for a review in experiments
with human subjects.

2See Tesfatsion & Judd (2006) or Delli Gatti et al. (2011) for an overview of ABMs.
3This has been analysed mostly for monetary policy; see e.g. De Grauwe (2011), Branch & Evans

(2011), Massaro (2013).

3



ing as these models are attracting a growing attention in macroeconomics, because

they offer an alternative way to optimized models of providing micro-foundations to

macroeconomic dynamics. They have been proved to be able to replicate at the same

time micro and macro empirical regularities, and to generate endogenous business

cycles, while abstracting from the very demanding assumptions of optimization and

representative agents.

In this paper, we offer an expectation model which presents several interesting

features, and we provide an application of this model within a macro ABM. Our

expectation model is based on an artificial neural network (hereafter ANN, see Mas-

ters (1993) for a comprehensive exposition). It is easy to implement, as only the

list of information available to the agents is required for them to form expectations,

this information being private or public. Therefore, the model can accommodate ho-

mogeneous or heterogeneous expectations. It does not require the relation between

information and the resulting variable to forecast to be linear, and can deal with

non-linearities. Such an expectation model is also an evolving structure, which con-

tinuously adapts to the changes in the economic environment, and notably to policy

changes. Consequently, expectations formed through this model allow for policy

analyses that are robust to the Lucas critique. The behavioural interpretation of

this model is also quite easy: agents form and update a "mental model" of their

environment, which gives them the possibility of generalizing, i.e. forming beliefs in

situations that they have never encountered before. It does not require agents to

have the knowledge of the structure of the economy beforehand, nor this structure

to remain stable, as RE do. It rather represents a very flexible and reactive form of

adaptive learning.

We then plug the ANN-based expectation model in a macroeconomic ABM (here-

after MABM). In our application, agents form inflation expectations based on the

observation of macroeconomic variables, and the information disclosed by the central

bank (hereafter CB), including the values of its objectives and its internal forecasts

of inflation, output gap and interest rate. The issue of CB communication and ex-

pectations is of particular interest because expectations have become the primary

concern of CBs over the past twenty years, and a key channel of the transmission

mechanism of monetary policy (Geraats (2009)). However, as underlined by Svens-

son (2009, p.11), the theoretical literature has to considered departures either from

RE, or from perfect information to give a rationale to CB’s communication: "in
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a hypothetical world of a fully informed and rational private sector in a stationary

environment with a stationary monetary policy, symmetric information between the

CB and the rest of the economy, and rational expectations, there is no specific role for

CB communication". The intrinsic features of MABMs precisely allow for such de-

partures, because they allow to release both the RE hypothesis, by instead modelling

procedural rationality à la Simon (1971), and the representative agent assumption,

by considering heterogeneous and interacting agents. These two elements are highly

likely to make the study of communication and expectations a particularly relevant,

yet challenging task.4

This paper pursues such a task in the MABM introduced in Salle, Yıldızoğlu

& Sénégas (2013). The main reason why we choose to elaborate on this model is

that, to the best of our knowledge, this is the only MABM designed to investigate

the interplay between expectations and macroeconomic stabilization through mon-

etary policy. Specifically, this MABM includes an explicit expectational channel of

monetary policy, in line with the modern view of central bankers as "managers of

expectations" (Woodford (2005)), while keeping the structure of the model as close

as possible to the baseline New Keynesian model. In Salle, Yıldızoğlu & Sénégas

(2013), Salle, Sénégas & Yıldızoğlu (2013), we provide a detailed analysis of the

functioning of the MABM, by putting an emphasis on the transmission channels

of monetary policy, especially the expectation channel. We show that the model

displays sounds and empirically relevant aggregate behaviour, and can therefore be

considered as "validated". This analysis sheds further light and credibility on the

results from our numerical simulations.

With this framework at end, we consider different transparency policies of the

CB, and check the consistency of our results in terms of macroeconomic performances

with empirical evidence and previous theoretical results. We obtain three main ob-

servations which are fully in line with these well-established results. First, opacity

is always sub-optimal, giving rise to the so-called opacity bias. Second, communi-

cation loosens the trade-off between the two objectives of monetary policy. Third,

communication acts as a partial substitute for policy actions, and softens the opti-

mal reactions of the Taylor rule, while improving the trade-off between inflation and

4So far, a strand of the literature has considered imperfect information, see e.g. Walsh (2006, 2008),
Demertzis & Viegi (2009). Another strand has explored learning, mostly using econometric learning, see
e.g. Orphanides & Williams (2005, 2007). For a comprehensive survey of this literature, see Eijffinger
& van der Cruijsen (2007) or Geraats (2014a). Nevertheless, all this literature keeps the underlying
macroeconomic model, based on optimizing homogeneous agents, unchanged.
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output gap stabilization through a better control of inflation expectations. The rel-

evance of these results indicates that the suggested expectational model constitutes

a promising model of boundedly-rational expectations in agent-based frameworks.

The rest of the paper is organized as follows. The ANN-based expectational

model is described in Section 2, the underlying MABM is presented in Section 3,

Section 4 explains the simulation protocol and the way we analyse the simulation

results, which are presented in Section 5. Section 6 concludes.

2 A model of inflation expectation using CB in-

formation

We introduce a model of "boundedly rational" expectations based on an ANN, that

can be applied to a wide range of economic contexts, e.g. expectations of profits in

a product market, rates of return in asset-pricing models, portfolio or consumption

decisions in intertemporal problem solving. We first review the economic literature

using ANN as a learning mechanism, and then apply the expectation model to the

formation of inflation expectations using CB information.

2.1 The use of ANN in economics: an overview

In economics, ANN have been mostly used as predictors of time series, and only in

few works as a way to model learning of boundedly rational agents.5 For instance,

Salmon (1995) implements an ANN in two models: a dynamic infinite-horizon game

à la Barro & Gordon in which agents try to infer the CB’s preferences (see Cukierman

(1986)), and an hyperinflation model with two equilibria, namely a low- and a high-

inflation equilibria (see Sargent & Wallace (1987) and Marcet & Sargent (1989)).

Salmon shows that the ANN learning converges towards more favourable configura-

tions than least-squares learning does, in both models.6 Cho & Sargent (1997) use

an ANN in the Kydland & Prescott (1977) repeated game, in which agents learn the

CB’s credibility. They show that commitment mechanisms are desirable, because

ANN learning does not necessary yield the CB to establish its reputation, and to

5See Cho & Sargent (1996) for a review of this literature, especially in game theory; see also White
(1992), Herbrich et al. (1999) or Evans & Honkapohja (2001, Chap. 15) in macroeconomics.

6More precisely, ANN learning results in a limitation of the inflation bias in the first model, and in
convergence towards the low inflation rate in the second model.
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deliver the low inflation equilibrium. But this learning mechanism limits the set

of possible rational expectations equilibria. In the same environment, Arifovic &

Yıldızoğlu (2014) apply an adaptive learning mechanism based on an ANN to the

policy maker (i.e. the CB), and show that the model consistently selects the Ramsey

outcome. This ANN-based learning model is the only one in line with experimental

evidence. Heinemann (2000) shows that stability conditions of the non-linear form

of the cob-web model under ANN learning are identical to those of the linear version

with least-squares learning. In Yıldızoğlu (2001), a collection of firms anticipates

future profits of R & D expenditures using an ANN, and this learning behaviour

allows to improve performances of the whole industry. Sgroia & Zizzo (2007, 2009)

further show that ANN learning well replicates performances of human subjects in

lab experiments, in which they have to identify Nash equilibria in simple games.

Yıldızoğlu et al. (2012) demonstrate that ANN learning is able to approximate the

optimal buffer-stock rule of consumption in a dynamic set-up, which is not possi-

ble under purely adaptive or social learning, essentially modelled through genetic

algorithms.

In what follows, we use such an ANN as an expectation model for inflation, and

integrates the CB’s information in that structure.

2.2 Learning through an ANN

2.2.1 The ANN as a "mental model"

Through their ANN, agents develop a simplified model of the mapping between

information they receive in each period from the CB about the state of the economy,

and the resulting inflation rate in the next period. Such a model is called a mental

model (Holland et al. (1989)): it allows agents to be capable to generalize, i.e. to

project past experiences onto expectations in circumstances that they have never

encountered yet. This model is dynamic, and evolves according to a trial-error

process. In each period, the last inflation forecast is confronted with the effective

realisation of inflation, and the mental model is updated by taking into account the

observed forecast error (see Figure 1).

The ANN represents such a mental model (see Masters (1993)). Least squares

learning algorithms (see, notably, Evans & Honkapohja (2001)) also belong to the

class of mental models, but assume a specific form of the relation between variables
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Figure 1: Dynamic functioning of a mental model (Yıldızoğlu (2001)).

– a linear form, and this linear form is assumed to be known by agents. In an ABM,

the underlying economic model is presumably highly non-linear and unknown. An

ANN provides a more flexible form of a mental model than least-squares models

do, because an ANN only requires the list of the inputs and the output objective,

without prejudging the form of the relation between these inputs and the output.

2.2.2 Structure of an ANN

Let us assume a collection of agents, indexed by i = {1, ..., n}. Each agent is endowed

with his own ANN, so that there are n ANNs in the model. The structure of each

ANN is composed of I inputs, one hidden layer and an output node (see Figure 3

hereafter for an illustration). The output node is the resulting one-period ahead

inflation forecast of each agent, denoted by πei,t+1. The inputs encompass the list of

information used to compute the inflation forecast. This information corresponds to

the information disclosed by the CB (see Subsection 3.2). As for the hidden layer, it

essentially filters irrelevant information. The number of hidden nodes in the hidden

layer, denoted by hN , models the complexity of the ANN. When the hidden layer

has at least two hidden nodes, the relation between inputs and output is non-linear.

Accordingly, we set the number of hidden nodes to hN = min{2,
√
bIc}. This setting

represents a pyramidal and non-linear structure, which is usual in the design of ANN

(see Masters (1993, p. 176-177) for further details). In each period t, the ANN is

fed with the values of the I inputs, denoted by oi, i = 1, ...I, and gives the inflation

forecast πei,t+1 as output. The mapping between inputs and output is described by

the weights ωi,j and wj , and the corresponding inflation forecast is given by:

πet+1 = S

 hN∑
j=1

wj

(
n∑
i

ωi,joi

) (1)
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where S(.) is the sigmoid activation function. The weights are randomly initialized so

that, at least at the beginning, agents’ mental models and the resulting expectations

differ. As new observations become available, agents’ ANN are said to be "trained",

i.e. the weights ωi,j and wj are updated. This updating is performed by back

propagating the errors on the ANN weights (see Rumelhart et al. (1986)) : epoch

iterations are performed, to reduce each time a proportion δ of the error between the

predicted and the actual inflation rate. The ANN is trained for each period with the

windowsSize ≡ 5∗ (I+1)×hN last observations, also called patterns in the related

literature (see Mehrotra et al. (1997, pp. 86-88) for this exact specification, and

related discussion). If an input i turns out to be irrelevant for forecasting inflation,

its associated weight is updated in each period towards zero. An ANN is therefore an

evolving structure, which is potentially more robust against model misspecification

(Heinemann (2000)).

We now introduce the MABM that serves as a framework to apply the expecta-

tion model.

3 Overview of the agent-based framework

We use the MABM in Salle, Yıldızoğlu & Sénégas (2013), Salle, Sénégas & Yıldızoğlu

(2013) as a framework, to which we refer for an exhaustive presentation. The pseudo-

code of the model, together with the explicit forms of the behavioural rules, are

given in Appendix A. This section provides a self-contained overview of the model

augmented with the ANN-based expectation mechanism.

3.1 General features of the model

This is a simple aggregate demand-aggregate supply model. The MABM is designed

to reproduce the main mechanisms at work in the New Keynesian (NK) baseline

model as discussed in Woodford (2003, Chap. 4), in particular inflation dynamics

and monetary policy, while accounting for heterogeneity and learning from bounded

rational agents. Bounded rationality, and the resulting learning processes of agents

imply some form of price and wage stickiness, as agents do not optimally adjust their

behaviour in face of variations in the environment – by optimal we mean maximising

a predefined welfare criterion. They instead follow simple behavioural rules that we

now describe.
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3.1.1 Households

The demand side is a collection of n heterogeneous households, indexed by i ∈ J1, nK.

Each household i is endowed with an inelastic one-unit labour supply, i.e. hsi,t ≡ 1,

∀i, t. Households follow two simple behavioural rules, evolving as they learn about

their environment. For both rules, they need to forecast inflation.

The first rule adjusts household i’s reservation wage to his expected inflation rate,

denoted by πei,t+1 (see Equation (A.1)). The strength of the adjustment, represented

by γwi > 0, is the first strategy of household i. Reservation wages are increasing

with the expected inflation rate, while assuming nominal wage downward stickiness.

Equation (A.1) introduces a direct transmission channel of inflation expectations to

labour costs (the wage bill), and hence to the price level. This mechanism provides

the expectations channel of monetary policy.

The second rule determines households’ consumption behaviour. We assume that

households are concerned with consumption smoothing, while taking into account

the expected real interest rate when making consumption/savings decisions. This is

in line with the modelling of the consumption channel in the NK literature, which

is based on the Euler relation. Precisely, households have a consumption rate, that

is applied to a proxy of their permanent income, denoted by ỹ. The proxy of their

permanent income is computed as a weighted average of their past (real) incomes.

The level of savings or debt is simply computed as the difference between current

income and desired consumption. The second behavioural rule adjusts each house-

hold’s consumption rate according to his expected real interest rate. The strength

of the adjustment, represented by γki,t, is the second strategy of household i. If the

expected interest rate rises, the consumption rate decreases, and the resulting sav-

ings rate increases, and vice-versa. Equation (A.3) provides the real (consumption)

channel of monetary policy.

The indexation strategy γwi,t and the substitution strategy γki,t are updated in

each period using two learning operators (see, e.g., Arifovic (2000)): an imitation

mechanism (occurring with a probability P I for each household) and an innovation

mechanism (with a probability PM ). The fitness criterion of the imitation process is

households’ utility u(.), i.e. an increasing and concave function of consumption. The

innovation mechanism modifies agents’ strategies through random draws, with noises

σw and σk respectively for strategies γwi,t and γ
k
i,t. The interpretation of parameters

σk and σw as shocks is provided in Subsection 3.2 (see Salle, Sénégas & Yıldızoğlu
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(2013) for an extensive discussion of this point).

3.1.2 Firm

The supply side is summarized by a single firm, mimicking the monopolistic com-

petition framework of the baseline NK model. Labour is the only input, used to

produce a perishable good, and the goods market operates under imperfect compe-

tition. The price is set according to a fixed mark-up µ over the marginal cost. The

firm’s strategy is her labour demand Hd
t . As for households, the firm uses a learn-

ing mechanism. We consider a gradient learning mechanism: as the firm’s profit is

increasing in the quantities (as soon as α 6= 0), the firm raises her labour demand

when her profit is above its (real) past trend Π̃t, and vice-versa (see Equation A.6).

3.1.3 Markets and aggregation

Agent-based economies being decentralized economies, we need to model every inter-

action between agents in the markets. We assume efficient matching processes (see

Benassy (1993)). The matching process in the labour market allows the firm to mini-

mize her production costs. Aggregate hired labour is given byHt = min(Hd
t , n). The

matching process in the goods market maximises the quantity of goods exchanged.

Aggregate consumption is given by Yt = min
(
Cdt ≡

∑n
i=1 c

d
i,t, Y

s
t

)
, and the output

gap xt by xt ≡ Yt−Y ∗

Y ∗ (Y ∗ ≡ n1−α being the potential output level).

3.1.4 Monetary policy

As for monetary policy, the CB acts under flexible inflation targeting (the inflation

target is denoted by πT ), using a Taylor rule. φπ > 0 and φx > 0 are the reaction

coefficients to inflation and output gap in the monetary policy rule. The CB is also

a "manager of expectations", and chooses the amount of information that it wants

to disclose to the agents about its policy, i.e. policy objectives, internal forecasts of

interest rates and future economic outlooks. These internal forecasts are established

using a L-lag VAR model of inflation and output gap, which is recursively updated

in each period through a least squares algorithm with a constant gain, denoted by

κ (see, inter alia, Orphanides & Williams (2007)). These forecasts are extrapolated

at horizon periods, and denoted by πCBt+horizon and xCBt+horizon. Through the rule

(A.5), the CB then forecasts the corresponding level of the interest rate, which may

prevail in horizon periods based on πCBt+horizon and xCBt+horizon. We note iCBt+horizon this

11



forecast (see Williams (2010) for such an approach). Admittedly, the CB does not

make use of its forecasts to set the interest rate, as we consider a contemporaneous

interest rate rule. Agents cannot therefore learn the rule through the knowledge

of these forecasts. We rather assume that these forecasts are public information,

delivered by a public statistical office in the model (see, e.g., Haber (2008) for a

similar interpretation). The CB may also disclose the inflation and the output gap

targets to agents.

In this paper, we assume that households use all this information to form their

inflation expectations through the ANN-based mechanism described in Section 2.2.

We now elaborate on the expectation channel of monetary policy in the model.

3.2 Central bank’s communication and the expectation

channel in the MABM

3.2.1 Inflation dynamics in the MABM

The functioning of the model, and the resulting inflation dynamics are summarized

in Figure 2. In line with the NK Phillips curve, inflation is driven by both aggregate

demand and inflation expectations. The model therefore incorporates the two trans-

mission channels of monetary policy of the baseline NK model, i.e. the consumption

channel and the expectations channel.7

With these two transmission channels at hand, the central bank is targeting the

optimal situation in the MABM.8 This optimal situation corresponds to H = n

(i.e. there is no unemployment), Y = Y s = n1−α (and x = 0, so that there is

no unsold quantities in the goods market), and π = πT . As discussed in Salle,

Yıldızoğlu & Sénégas (2013), departures from this optimal state may arise from three

sources: i) the boundedly rational behaviour of agents, ii) the innovation operator

in households’ learning process, which translates into heterogeneity in individual

behaviour, and may create aggregate volatility, and iii) inflation expectations which

may become unanchored, and endogenously drive the inflation process. Bounded

rationality has been emphasized as a source of macroeconomic volatility in many

related contributions; see, notably, De Grauwe (2011) for a discussion.

Concerning point ii), parameters σk and σw can be interpreted as shocks on,

7We refer here to Salle, Yıldızoğlu & Sénégas (2013) for an exhaustive discussion and derivation of
these channels.

8By optimal, we mean that aggregate consumption and firm’s profits are maximized.
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Figure 2: Functioning of the MABM (Salle, Sénégas & Yıldızoğlu (2013))

respectively, consumption and expectations channels of monetary policy. Shocks σk

induce heterogeneity in the behavioural rule (A.3) of households. This heterogeneity

translates into variability in the consumption channel of monetary policy. This vari-

ability has been emphasized in the macroeconomic literature as model uncertainty

(see the earlier contribution of Brainard (1967)). Shocks σw represent second-round

effects, through which expected inflation feeds back into actual inflation through

nominal wage growth rate. Hence, shocks σw induce heterogeneity in individual in-

dexation behaviour (see Equation (A.1)). This behavioural heterogeneity translates

into variability in the expectations channel of monetary policy. These shocks can be

interpreted as inflationary or cost-push shocks. Importantly, they introduce a trade-

off between inflation and output gap stabilization: as soon as inflation becomes

driven by expectations, inflation does not convey changes in aggregate demand any

more, and the two objectives move in opposite direction.

This naturally yields to point iii), and the importance of anchoring inflation ex-

pectations. In our model, much like in the NK literature, the gain from transparency

arises from the potential control on inflation expectations the CB may exert. Co-

ordination of inflation expectations can also be discussed regarding performances

in learning. One could expect that learning through imitation would yield better

performances if it takes place in an environment where households hold comparable

beliefs.

In a nutshell, monetary authorities aim at driving inflation expectations through

the disclosure of information, in order to anchor inflation expectations, and hence

stabilize inflation and output gap. This management of expectations is made chal-

lenging by i) the global uncertainty context due to the boundedly rational behaviour

of agents and by ii) the occurrence of shocks which introduce heterogeneity among
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individual behaviour, and disturbances in the transmission channels of monetary

policy.

We now detail how households form their expectations using the ANN and the

CB’s information.

3.2.2 Communication and inflation expectations in the MABM

In our particular application of ANNs, inputs I represent the information that agents

use to forecast inflation. The more transparent the CB, the more information agents

receive, and the more inputs they make use of. This mechanism well translates the

role of the CB as a manager of expectations.

Following the empirical study of Minegishi & Cournède (2009), we distinguish

between different degrees of transparency : transparency about objectives, trans-

parency about policy decisions and transparency about economic analysis.9 As we

aim at investigating the role of communication on macroeconomic outcomes, we

compare different scenarios of CB communication policy. The more information

agents receive from the CB, the higher the quantity of inputs in their ANN (see

Table 1). As a matter of illustration, Figure 3 depicts the ANN of an household in

the case of the 3-degree of transparency (I = 5 inputs).

Precisely, the 0-degree of transparency represents an opaque CB, which com-

municates no information. In that case, its instrument has an informative value

(Walsh (2007)), and agents make use of the interest rate and its variation to forecast

inflation (I = 2). The 1-degree represents transparency about the objectives: the

CB only discloses the inflation target and the output gap target (I = 4). In the

2- and 3-degrees, the CB also provides forward-guidance to agents: it communi-

cates its projection of interest rate (I = 5). Degrees 4 and 5 represent transparency

about the economic analysis, and the CB also discloses projections of macroeconomic

indicators (inflation and output gap, I = 7).

We further distinguish between a vague communication strategy, in which the

CB only communicates about expected trend of the variables (either increasing or

decreasing, in degrees 2 and 4), and an accurate communication, in which the CB

communicates about the exact values of its internal forecasts (degrees 3 and 5).

Recall from Subsection 3.2 that the CB establishes forecasts of inflation, output

9They further distinguish transparency about the decision process in the case of monetary policy
committees, but this form of transparency hardly applies in our model.
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inputs Degree of transparency Form of
of the ANN 0 1 2 3 4 5 6 transparency

it X X X X X X X opacity
∆it

a X X X X X X X opacity
x(t)b X X X X X X objectives

πt − πT b X X X X X X objectives
∆iCBt+horizon X X guidance/decisions
iCBt+horizon X X X guidance/decisions

∆πCBt+horizon X economic analysis
∆xCBt+horizon X economic analysis
πCBt+horizon X X economic analysis
xCBt+horizon X X economic analysis

πCBt+horizon − πt+horizon X economic analysis
xCBt+horizon − xt+horizon X economic analysis

Table 1: Inputs of households’ ANN under the 7 different degrees of transparency of the
CB.

a ∆x stands for the variation of variable x between t− 1 and t.
b As objectives πT and x∗ are time-invariant, they cannot be integrated as such as ANN inputs.

gap and corresponding interest rate at horizon periods. In degree 6, the CB gives

the a posteriori errors of its forecasts, meaning that it underlies the uncertainty

surrounding its projections. In this case, agents have in principle enough information

in their ANN to learn the projection model of the CB when training their ANN.

The numerical simulations below analyse the interplay between the CB’s commu-

nication policy and the interest rate rule. Before turning to the simulation results,

we describe the simulation protocol, and how we analyse the simulation results.

4 Simulation protocol

4.1 Calibration

Table 2 recalls the list of parameters of the model, and the corresponding values

that we use in the numerical simulations. Parameters related to the NK literature10

are easily calibrated to standard values (see e.g. Rotemberg & Woodford (1998),

Williams (2010)). We further have n = 100 households, and we run the simulation

for T = 800 periods, with a burn-in phase of 100 periods. This choice partly responds

to computational constraints, and partly results from sensitivity analyses performed

10Specifically, these are α, the rate of returns of the production function, µ the firm’s mark-up, L the
number of lags, and κ the constant gain in the CB’s VAR model.
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t+1
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Figure 3: Representation of the ANN in case of the 3-degree of transparency.

in an earlier stage of this research. ANN parameters are set to standard values in

the related literature (see Masters (1993)). Coefficients of the monetary policy rule

– φπ and φx – as well as the transparency strategy of the CB (including the horizon

of its forecasts and the inflation target) are part of the monetary policy simulation

exercise (see Subsection 4.2). We first consider a baseline simulation with πT = 2%

and horizon = 4. In Subsection 5.4, we investigate the sensibility of our results to

these two parameter values. As for the rest of the parameters, we use the calibration

in Salle, Sénégas & Yıldızoğlu (2013), in which we perform an empirical validation

exercise.11 We set σw = 0.25 and σk = 0.05 in order to consider an environment with

a potential trade-off between the stabilization of inflation and the level of activity.

4.2 Result analysis

We interpret the simulation results under different degrees of CB’s transparency in

terms of the Taylor (1979) curve. This curve provides an intuitive description of

the trade-off that the CB faces between its two objectives in conducting monetary

policy. It gives the minimal variability of inflation and output gap as a function

of the CB’s relative preferences over these two objectives in the (var(π), var(x))

plane. More precisely, the more vertical the curve, the higher the opportunity cost

of inflation stabilization in terms of output gap stabilization. The flatter the curve,

the higher the inflation cost to stabilize output gap. The closer to the origin, the

looser the trade-off between inflation and output gap stabilization. However, this

11Extensive sensitivity analyses have been further conducted in Salle (2012). The main influential
parameters turn out to be σw and σk, the proxy for the shocks in the MABM. The model is otherwise
quite stable under a large range of parameters values.
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curve is usually derived in analytical models. In these models, this curve is obtained

under the assumption that the monetary policy rule is optimal, in the sense that

reaction coefficients φπ and φx are derived from the minimization of a loss function

of the following form:

L(π, x, λ) = var(π − πT ) + λvar(x) (2)

under the constraint of the underlying economic model (where λ is the relative pref-

erence of the CB for the output gap stabilization). In our model, such an underlying

macroeconomic model is unknown, and we have to adapt this method to derive

optimal monetary policy in the MABM. We proceed in the following way.

We allow for 5 × 5 = 25 different monetary policy rules, by setting (φπ, φx) ∈
{0, 0.5, 1, 1.5, 2} × {0, 0.25, 0.5, 0.75, 1}. The model is run 20 times under each rule

with different seeds of the random number generator, in order to account for the

non-deterministic nature of the MABM. We collect the variance of the inflation

gap and the output gap under those 25 configurations. Among those 25 pairs of

inflation and output gap variances, we eliminate those which are Pareto dominated,

i.e. pairs {var(π)i, var(x)i}, i = {1, ..., 25}, for which it exists at least one pair

{var(π)j , var(x)j}, i 6= j among the 25 ones, for which we have var(π)i > var(π)j

and var(x)i > var(x)j . The remaining pairs are not Pareto-comparable, because

they correspond to situations in which, either inflation is more volatile, but output

gap is better stabilized, or the opposite. These pairs form an efficient frontier, and

with each of those pairs of inflation and output gap variabilities are associated the

corresponding values of φπ and φx. We denote these values by φ∗π and φ∗x, and

they define the optimal monetary policy in our model. Depending on its relative

preference for either inflation or output gap stabilization (i.e. λ), the CB chooses

the outcomes and its corresponding monetary policy rule in order to minimise the

loss function (2). We repeat this exercise for the 7 degrees of transparency, and

compare the results. We are specifically interested in assessing whether our results

are in line with empirical evidence and previous theoretical results in the literature on

transparency and optimal monetary policy. This would indicate that our ANN-based

expectation model yields sound macroeconomic dynamics in the simple ABM that

we considerer, and may hence constitute a promising way of modelling expectations

in ABMs.
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5 Simulation results

Before turning to the results, we would like to stress an important point concern-

ing our approach. Our expectations model is based on an ANN. ANNs provide a

flexible tool to map inputs (CBs’ information and macroeconomic data in our case)

to output (inflation expectations in our case). However, this flexibility comes along

with a major, inherent flaw, namely the "black box" aspect of the results (Yıldı-

zoğlu (2001)). Results have to be obtained through numerical simulations, and the

internal functioning of each agent’s ANN is not observable. However, the analysis

provided in two companion papers (Salle, Yıldızoğlu & Sénégas (2013), Salle, Séné-

gas & Yıldızoğlu (2013)) allows to shed some light on the underlying mechanisms at

work in the MABM, and we rely on it in the discussion of our results.

Figure 4 displays two main information across the 7 degrees of transparency: the

optimal monetary policy (φ∗π, φ
∗
x) as a function of the CB’s preference parameter λ,

and the resulting minimal loss, given by Equation (2). Figure 5a shows the results

in terms of Taylor curves in the (var(π), var(x)) plane for the different degrees of

transparency. We already notice that, when output gap stabilization is accounted

for in the loss function (i.e. when λ = 1), the optimal reaction to inflation gap

φ∗π is lower, and the optimal reaction to output gap φ∗x is higher than the optimal

coefficient prevailing when only inflation stabilization enters the loss function (i.e.

when λ = 0). This result is rather intuitive, and stresses the consistency of the

underlying mechanisms in the MABM. More fundamentally, three main results jump

out from our simulations.

5.1 The opacity bias (degree 0 of transparency)

Opacity is clearly suboptimal in the MABM. The so-called opacity bias (which cor-

responds to the case of degree 0 of transparency) is very salient. Figure 4a reports

the value of the loss function (2) when λ = 0, i.e. when only inflation variability

enters the CB’s loss function, and Figure 4b displays the case where λ = 1, i.e. when

output gap stabilisation also matters for monetary policy. From the comparison of

these two figures, it ensues that the opacity bias particularly affects the variability

of inflation. We therefore come up with the following result:

Result 1 If the CB is opaque, agents form their inflation expectations from the

observed values of the policy instrument (the nominal interest rate). This produces
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(a) λ = 0 (b) λ = 1

Figure 4: Values of the loss function (2) and optimal monetary policy rule (φ∗
π, φ

∗
x),

πT = 0.02 and horizon = 4.

The pie chart gives two pieces of information. First, each part of the pie corresponds to a degree of
transparency (cf. Table 1), and represents the minimal value of the loss function (2) obtained for a given
degree of transparency. The surface of each of the seven pie parts has been normalized to a 0.03 loss (as all
observed losses across simulations are lower than this threshold). Second, for each degree of transparency
(from 0 to 7), the corresponding optimal coefficients φ∗π and φ∗x are displayed. Concentric circles in dash
gray report the scale, from 0 at the origin, to 2 on the circle perimeter. For instance, if λ = 1 (right
panel), and the CB is opaque (degree 0), the minimal loss is close to 0.03 (as the corresponding surface
of the pie is almost full), and is obtained with φ∗π = 0.5 and φ∗x = 1.

the so-called opacity bias, which disturbs the way the CB can actually affect the real

interest rate. This opacity bias particularly increases the variability of inflation.

The opacity bias is a well-established result in the macro literature; see notably

Walsh (2007, 2008, 2010), Cornand & Baeriswyl (2010).

5.2 Transparency and the inflation-output gap variabil-

ity trade-off

The optimal monetary policy φ∗π and φ∗x depends on the degree of transparency.

Transparency clearly loosens the trade-off between inflation and output gap stabi-

lization in the MABM. An important remark is in order at this stage of the discus-

sion. As stressed in Salle, Sénégas & Yıldızoğlu (2013), we do not interpret optimal

monetary policy coefficients with respect to the compliance or not with the so-called

Taylor principle. We recall that the Taylor principle prescribes a more than one-
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to-one adjustment of the nominal interest rate to the inflation gap in order to rule

out indeterminacy issues, and the associated possibility of sunspot equilibria in RE

models, see e.g. Bullard & Mitra (2002). By contrast to RE models, ABMs result

by construction into out-of-equilibrium dynamics, and the analysis does not seek to

select a specific path of aggregate variables. Consequently, the concept of indetermi-

nacy hardly applies in an ABM context. We shall not conclude that the CB should

not react to inflation based on an optimal φπ coefficient equal to 0. We should

rather interpret this result in terms of trade-off: if the optimal rule is a one-corner

strategy (φ∗π > 0 and φ∗x = 0, and vice-versa), stabilizing one objective is enough

to stabilize both, and the CB faces no trade-off between its two objectives. If the

optimal rule implies to react to both in order to minimize its loss function, then the

CB is facing such a trade-off. In light of this interpretation, it is clear from Figures

4b that transparency loosens the trade-off between inflation and output gap stabil-

isation, as a one-corner strategy becomes the optimal strategy when transparency

increases. Efficient frontiers report in Figure 5 clearly confirm this interpretation,

as high degrees of transparency move the frontiers closer to the origin. We then

establish the following result:

Result 2 Increasing transparency allows the CB to loosen its trade-off between in-

flation and output gap stabilization.

5.3 Transparency and optimal reactions to inflation and

output gap

The more transparent the CB, the more moderate the optimal monetary policy

rule. As communication directly affects inflation expectations, and hence inflation,

it acts as a partial substitute to monetary policy actions, and the optimal reactions

coefficients decrease when coupled to a high degree of transparency. As discussed

in Salle, Sénégas & Yıldızoğlu (2013), in the MABM, the expectations channel is

the main driver of inflation, so that anchoring inflation expectations to the target

is practically sufficient to reach the target on average. This is confirmed here. This

result has been established, notably, by Orphanides & Williams (2005, 2007), in an

economy in which agents learn how to forecast through least-squares regressions,

and the CB can choose to announce its inflation target. Here, by relaxing the

assumptions that agents know the true form of the underlying economic model, we
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show that not only the knowledge of policy objectives, but also the disclosure of

the CB’s internal forecasts of interest rates and economic outlooks are needed to

soften monetary policy reactions. Allowing for self-fulfilling expectations and least-

squares learning based on a VAR model, Eusepi & Preston (2010) obtain very similar

conclusions, while Brazier et al. (2008) and De Grauwe (2011) do by considering

heuristic expectations. Empirical studies tend to confirm that statement as well

(see e.g. Geraats (2009)). Nevertheless, transparency cannot completely replace

actions (see Hildebrand (2006) for a discussion).

More precisely, a closer look at Figure 4 suggests that the CB has two strate-

gies which are likely to minimize the loss function. The first one consists in using

strong reaction coefficients with a moderate transparency policy that discloses only

objectives (degree 1), or possibly the future values of its instrument (degree 3). The

second one prescribes adopting moderate monetary policy reactions, coupled with

a high degree of transparency, that discloses instrument and policy projections, as

well as uncertainty surrounding those projections (degree 6).

The first strategy, which emphasizes a limited transparency strategy, is in line

with several statement in the recent literature. For instance, Lamla & Lein (2011)

analyse how financial markets process the signals that the ECB communicates, and

show that they much more integrate price level information, than information con-

cerning future economic outlooks. Using an experimental approach, Kahneman

(2003) show that financial markets are likely to overreact to signals from monetary

authorities if the quantity of information becomes overwhelming, and challenges

their cognitive ability to process this information. These two papers tend to indi-

cate that increasing the number of information provided by the CB to the agents

(in our model, this implies to increase the number of inputs to the ANN) does not

necessarily make agents’ expectations more accurate, and the economy more stable.

Nevertheless, Figure 5a indicates that the second strategy – consisting in adopt-

ing moderate monetary policy reactions and a high degree of transparency – delivers

the more favourable trade-off, and clearly shows how the efficient frontier is moved

towards the origin when the degree of transparency increases. Further descriptive

statistics in Table 3 in Appendix confirm this analysis. This strategy fits perfectly

the trend towards more and more transparency in the conduct of monetary pol-

icy that we have been observing over the past two decades. We finally obtain the

following result:
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(a) horizon = 4, πT = 0.02
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(b) horizon = 4, πT = 0.04
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(c) horizon = 4, πT = 0.01

Figure 5: Efficient frontiers in the 7 degrees of transparency.

Frontiers result from a smoothing estimation, and are only displayed to make the interpretation of the
plots easier.

Result 3 Two polar strategies dramatically limit the values of the CB’s loss func-

tion:

• Being transparent on its objectives and reacting in a strong manner to its two

objectives.

• Being transparent on every aspect of monetary policy (including economic out-

looks projections, and a posteriori errors), and reacting in a moderate way to

its objectives.

The second strategy delivers the most favourable trade-off between inflation and out-

put gap stabilization.

These last two results are strongly in line with empirical evidence (see notably

Geraats (2014b)), and are the main rationale behind the increasing transparency of

modern CBs.

5.4 Sensitivity analyses

We recall that, so far, we have used horizon = 4 and πT = 2%.

5.4.1 horizon of the CB’s projections

Table 3 in Appendix provides statistics of inflation expectations, inflation and out-

put gap (average and variability) across the seven degrees of transparency for various

ranges of the parameter horizon, namely 1, 4 and 8. We clearly see that inflation
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Figure 6: Illustration of the model’s dynamics (left panel: inflation, right panel: average
inflation expectations).

expectations display the best stabilisation for horizon = 4, significantly improving

upon horizon = 1. However, increasing the horizon of the CB’s projections to 8 pe-

riods deteriorate inflation expectations anchorage, and the resulting macroeconomic

performances. The worse results obtained under a 8 period projection compared to

the case with horizon = 4 can be explained by the number of lags in the VAR model

that the CB uses to form its forecasts of inflation and output gap (and resulting in-

terest rate levels). As we set L = 4 periods, projections at 8 periods are likely to be

too uncertain to guide agents’ expectations.

Figures 6 provide simulated time series from the MABM under different degrees

of transparency in order to illustrate this finding. First, it is clear that macroeco-

nomic performances are mediocre under opacity (degree 0), inflation expectations are

unanchored, and exhibit a high variability. The announcements of policy objectives

and short-run interest rate projections limits the volatility of inflation (degree 2).

However, when projections only concern the next period (horizon = 1), inflation ex-

pectations get unanchored, and inflation goes further from the target. Increasing the

horizon of those projections allows to stabilize inflation expectations, and dramati-

cally improves macroeconomic stabilization (degree 2, horizon = 4). This indicates

that a medium-run horizon of projections better manage inflation expectations, and

make the inflation objective easier to reach.

5.4.2 Value of the inflation target πT

Finally, we look at the sensibility of the results to the values of the inflation tar-

get πT (see Figures 5). Rising the inflation target up to 4% globally deteriorates

performances, while setting the target at 1% produces ambivalent effects. A higher

23



inflation target implying a higher variability of inflation is in line with empirical evi-

dence stating that the average and the volatility of inflation are positively correlated.

A lower target reduces the relative benefit from transparency, as efficient frontiers

become fairly similar across the different degrees of transparency. However, frontiers

become more vertical, signalling that the opportunity cost of inflation stabilization

in terms of output gap stabilization is higher. This result seems intuitive, as a lower

target constitutes a more challenging objective in the presence of cost-push shocks

(modelled here as second-round effects).

6 Conclusions

Rational expectations are not a non-controversial assumption in the profession, be-

cause this assumption involves extremely sophisticated cognitive abilities and knowl-

edge from the agents. Furthermore, such an assumption cannot be transposed as

such in (macro) agent-based models. The lack of alternative expectational models

has forced the state-of-the-art agent-based (macro) literature to make use of sim-

plistic assumptions, such as naive expectations. However, on the other hand, such

simplistic assumptions appear too limited to capture the way agents adapt their

behaviour in a realistic manner. This paper introduces an expectation model which

displays several interesting features, making it an interesting candidate to model ex-

pectations in agent-based models. First, it is easy to implement, as only the list of

information used to form expectations (inputs) and the resulting variable to forecast

(output) are necessary. This feature obviously complies with the information and

the knowledge limitations implied by bounded rationality. Second, it is flexible, as it

allows agents to develop a "mental model" of the mapping between information and

the variable to forecast, even if the underlying relation is unknown, and highly non-

linear. This feature allows agents to continuously adapt their expectational model

to changes in their environment, especially to policy changes, and complies with the

requirements raised by the Lucas critique.

This model is plugged in the macroeconomic agent-based model introduced in

Salle, Yıldızoğlu & Sénégas (2013) to model how agents form inflation expectations

based on the observations of macroeconomic variables, and the information disclosed

by the central bank – objective values, internal forecasts of inflation, output gap and

interest rate. This agent-based model has been chosen as, to the best of our knowl-

24



edge, this is the only one including an explicit expectational channel of monetary

policy, therefore being in line with the modern view of central bankers as "man-

agers of expectations". Furthermore, the intrinsic features of agent-based models –

mainly boundedly rational and heterogeneous agents learning in a limited informa-

tion environment – make the study of communication and expectations anchorage

of particular interest in this type of frameworks.

Different degrees of transparency are considered, and the resulting macroeco-

nomic performances are analysed in light of empirical evidence and previous theo-

retical results. We obtain three main observations which are fully in line with these

well-established results. First, opacity is always sub-optimal, giving rise to the so-

called opacity bias. Second, communication loosens the trade-off between the two

objectives of monetary policy. Third, communication acts as a partial substitute for

policy actions, and softens the optimal policy responses. The relevance of these re-

sults indicates that the suggested expectational model constitutes a promising model

of boundedly rational expectations in agent-based frameworks.

From a broader perspective, this paper highlights the potential of artificial neural

networks as learning models.
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A Pseudo-code of the model in Salle, Yıldızoğlu
& Sénégas (2013)

Initialization

1. Creating n households and initializing their individual variables (strategies,
expectations and resulting behaviour);

2. Creating one firm and initializing her individual variables (price, quantity);

3. Initializing aggregate variables and parameter values;

4. Choosing one degree of transparency for the CB.

Sequence of the events

5. Computing each household’s i reservation wage:

wi,t = wi,t−1 ×
(

1 + 1(πei,t+1>0)γ
w
i,t · πei,t+1

)
(A.1)

6. (Labour market)

(a) Sorting the n households by increasing wdi,t : (l1, ..., ln);
(b) Setting hli,t = 1 while i ≤ Hd

t , and then hli,t = 0;
(c) Computing Ht (aggregate hired labour);

7. Computing the corresponding good supply Y s
t = H1−α

t , α ∈]0, 1[, the wage bill
and the corresponding price Pt;

8. Computing each household i’s individual variables:

(a) Income flow yi,t:

yi,t = wi,thi,t +
Πt−1

n
+ bi,t−1(1 + it−1) (A.2)

(b) The consumption rate ki,t:

ki,t = ki,t−1 − γki,t
(
it − πei,t+1

)
∈ [k, k̄] (A.3)

(c) Goods demand:
cdi,t = ki,t · ỹi,t (A.4)

where ỹi,t is a weighted average of past (real) incomes,
(d) The resulting savings/debt strategy: bi,t

9. (Good market)

(a) Sorting the n households by decreasing cdi,t : (g1, ..., gn);
(b) Setting cgi,t = cdgi,t, and i = i+ 1 while cdgi,t > 0, and stopping as soon as∑

cgi,t ≥ Y s
t ;

(c) Computing sold quantities Yt, the firm’s profits Πt, the utility of each
household ui,t, the inflation rate πt, the output gap xt and all other ag-
gregate indicators.

10. while t ≤ T (T in the total number of periods of the run):

(a) (Monetary policy): Setting the interest rate it according to xt and πt:

1 + it = (1 + πT )

(
1 + πt
1 + πT

)φπ ( 1 + xt
1 + x∗

)φx
(A.5)
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(b) (Households’ learning): for each household i, implementing the learning
process on strategies (γwi,t, γ

k
i,t):

i. updating the pair of strategies by imitation, with a probability P I ,
ii. updating the pair of strategies by random exploration, with a proba-

bility PM ;
(c) (Households’ expectations): for each household i, updating his ANN, and

computing the resulting inflation expectation πei,t+1.

(d) (Firm’s learning): Adjusting the labour demand of the firm Hd:{
If Πt

Pt
≥ Π̃t, then Hd

t+1 = Ht × (1 + ε)

otherwise Hd
t+1 = Ht × (1− ε)

(A.6)

where ε > 0 is an adjustment rate.
(e) Running steps (5) to (10).
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B Calibration

Parameter Value(s) in the numerical Definition
simulations

Structural parameters of the MABM
n > 1 100 Number of households
T > 1 800 Number of periods

α ∈ [0, 1[ 0.25 Rate of returns of the production technology
µ ≥ 0 0.10 Mark-up over the marginal cost
ε > 0 0.01 Adjustment rate of labour demand to changes in profits
ρ 0.5 Parameter in weighted averages.

k ≥ 0 0.5 Lower bound of the consumption rate
k̄ ≥ 1 1.5 Upper bound of the consumption rate

PM ∈]0, 1] 0.02 Probability of mutation in the GA
P I ∈]0, 1] 0.1 Probability of imitation in the GA
σw > 0 0.25 Shock on the expectations channel
σk > 0 0.05 Shock on the consumption channel

ANN parameters
hN min{2, b

√
(I)c} Number of hidden nodes in the ANN

windowSize 5 ∗ (I + 1)× hN Number of past observation to train the ANN
numEpoch 25 Number of iterations to train the ANN

τ 0.1 Learning rate of the ANN
Monetary policy parameters

φπ ≥ 0 {0, 0.5, 1, 1.5, 2} Reaction to coefficient to inflation gap
φx ≥ 0 {0, 0.25, 0.5, 0.75, 1} Reaction coefficient to output gap
πT ≥ 0 {0.01, 0.02, 0.04} Inflation target

horizon ≥ 0 {1, 4, 8} Horizon of the CB’s previsions
L ≥ 0 4 Number of lags in the CB’s VAR prevision model
κ ≥ 0 0.02 Gain in the CB’s VAR prevision model

Table 2: Parameters values in numerical simulations

C Additional simulation results

Degrees of transparency
0 1 2 3 4 5 6

mean πei,t 0.12 0.0443 0.074 0.0801 0.0942 0.0957 0.0438
horizon = 1 mean πi 0.1148 0.0531 0.0856 0.0922 0.1091 0.1041 0.0427

var πt 0.0397 0.0132 0.0228 0.0357 0.0418 0.0516 0.0171
mean xt 0.1229 0.0477 0.0866 0.0902 0.072 0.0577 0.0305
var xt 0.0549 0.02 0.042 0.045 0.0311 0.0454 0.0115

mean πei,t 0.1397 0.023 0.0223 0.0142 0.0424 0.0244 0.0373
horizon = 4 mean πi 0.1495 0.045 0.039 0.0241 0.036 0.0363 0.038

var πt 0.0409 0.007 0.0057 0.0036 0.0069 0.0036 0.0153
mean xt 0.1425 0.0412 0.0191 0.0499 0.1147 0.1036 0.1125
var xt 0.06 0.0148 0.0066 0.0239 0.0856 0.0494 0.06

mean πei,t 0.1487 0.0538 0.0557 0.0606 0.0662 0.0541 0.0838
horizon = 8 mean πi 0.156 0.0775 0.0804 0.0823 0.0822 0.0662 0.0838

var πt 0.0399 0.0209 0.0178 0.0299 0.0158 0.0155 0.0272
mean xt 0.1323 0.0273 0.007 0.026 0.0665 0.0438 0.1238
var xt 0.0534 0.0085 0.0013 0.0101 0.0307 0.022 0.0473

Table 3: Further descriptive statistics (109, 620 observations in total, πT =
2%)
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