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Abstract

This paper revisits the merits for a central bank of announcing its inflation target using

an agent-based model. The model preserves the main transmission channels of monetary

policy used in stochastic dynamic general equilibrium models– namely the consumption and

the expectation channels, while allowing for agents’ heterogeneity in both expectations and

behaviour. We find that, in a rather stable environment like the Great Moderation period,

announcing the target allows for the emergence of a loop between credibility and success:

if the target is credible, inflation expectations remain anchored at the target, which helps

stabilize inflation, and, in turn, reinforces the central bank’s credibility. We then tune the

degree of heterogeneity in agents’ behaviour and the individual learning process to introduce

inflationary pressures, accompanied or not by uncertainty affecting the real transmission

channel of monetary policy. Even if learning and heterogeneity would a priori lead to think

favourably about transparency, we show that this virtuous circle is not robust as transparency

may expose the central bank to a risk of credibility loss. In this case, we discuss the potential

benefits form partial announcements.
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1 Introduction

Over the past three decades, inflation targeting (IT hereafter) has been adopted by an increasing

number of countries. Under an IT regime, the central bank (CB hereafter) puts a strong emphasis

on communication, especially by announcing the inflation target to the public. Following this

trend, an important strand of the academic literature has investigated which macroeconomic

benefits could be expected from adopting IT.1 Most of the related studies point to the impact

on inflation expectations as the key stabilisation mechanism under this regime.

Two properties of an explicit inflation target have been emphasized (see, notably, Demertzis

& Viegi (2008, 2009)). First, an explicit, numerical target makes it a good candidate as a

focal point of coordination for potentially heterogeneous inflation expectations. Second, the

announced target becomes a natural reference point for assessing the inflation performances of

the monetary authorities, and, hence, for judging the credibility of the announcement itself.

As a consequence, this credibility stands as a key factor for determining whether the target

can become an effective anchoring device for inflation expectations.2 In a dynamic perspective,

Demertzis & Viegi (2009) show that the anchoring properties of IT arise through the emergence

of a self-reinforcing credibility-success loop: the more credible the monetary authorities, the

more likely inflation expectations to be anchored on the target, the more likely inflation to be

stabilized around the target, which comforts the initially favourable credibility assessment, and

so on.

The current paper aims at revisiting the stabilisation properties of the inflation target in

an economic setting characterised by a collection of fully heterogeneous agents that behave,

interact and learn under bounded rationality. We depart, in that regard, from the aforementioned

literature that has addressed the role of the target in a context where heterogeneity essentially

pertains to the formation of inflation expectations, while considering agents as homogeneous

and fully rational players in the coordination game. In this paper, agents may not only differ

regarding the formation of their inflation expectations but also concerning other dimensions of

their economic behaviour. This heterogeneity is, in turn, likely to complicate the coordination

process between agents in a bounded rationality context.

In such a specific environment, the question naturally arises of whether the anchoring prop-

erties of the inflation target can be used as an efficient stabilisation tool by the monetary au-
1The literature is impressive on these crossing issues. For a recent survey on IT, see Svensson (2010) and the

references therein. A useful reference is also Walsh (2009). On the impact of transparency and communication of
the CB, see, among others, Geraats (2002, 2009) and Woodford (2005). Empirical evidence on the effects of IT
on expectations has been provided by Johnson (2002, 2003).

2Empirical evidence supports the view that the credibility of the CB, inherited from past inflation performances,
acts as a primary determinant of inflation expectations (Blinder et al. 2008).
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thorities. The answer depends on the interplay between the inflation expectations dynamics that

may be influenced by the publicity of the target on the one hand, and the learning dynamics

that drives the coordination between agents on the other hand. In particular, the control of the

inflation rate is likely to be all but a simple matter, as interactions between agents, and learning

shape the transmission mechanisms of monetary policy in the economy. As a consequence, the

announcement of the target can pose a more pronounced credibility challenge for the policymaker

than the one arising in representations of IT within representative agent settings.

Given the features of the economic setting we want to focus on, an agent based model

(ABM) seems a well-suited framework. This framework acknowledges the heterogeneity between

agents, and the modalities of their learning behaviour at the individual level, without being

constrained by the assumptions of intertemporal optimization and aggregation requirements

through representative agents.3 The price to pay for that flexibility is the absence of any tractable

representation of the model, which has then to be assessed through numerical simulations of the

emerging dynamics, and a dependence of the outcomes on the range of parameters, which have

thus to be chosen with caution.

In the following paper, we elaborate on the ABM developed in Salle et al. (2013). This

ABM is deliberately constructed so as to retain the basic structure of standard macroeconomic

models dealing with monetary policy (like the NK model). Specifically, this model encompasses

the consumption and the expectations channels of monetary policy to inflation. We extend this

ABM by explicitly accounting for an inflation expectations formation process that acknowledges

the twofold status of the inflation target under IT, playing both as a focal point and as a reference

point for credibility. On those aspects, we adapt the approach developed by Demertzis & Viegi

(2009) to the case of agents’ heterogeneity and bounded rationality. We examine under which

conditions a credibility-success loop may emerge under IT, and make this regime an advantageous

choice for the monetary authorities in the economic environment we have considered.

Our main results can be summarized as follows. The announcement of an inflation target

may allow for the emergence of a credibility-loop success if a relatively wide radius of tolerance

is coupled with. However, this loop arises only in stable macroeconomic environments. In

volatile macroeconomic environments, especially characterized by a significant variability in the

expectation channel of monetary policy, tying one’s hands by announcing an inflation target

turns out to be problematic. Macroeconomic volatility impairs the ability of the CB to deliver

its official inflation commitment, and a credibility problem emerges. As a result, a reverse
3For recent contributions using macro ABMs, see, e.g., Dosi et al. (2010), Lengnick (2013), Assenza et al. (2015).

Few of them have been devoted to the specific purpose of monetary policy analysis, see notably Delli Gatti et al.
(2005), Raberto et al. (2008) and Salle et al. (2013).
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credibility loop can set in. In that case, the economy may benefit from partial announcements

about the inflation target, that provide a clear signal to anchor inflation expectations for the

part of the public that is reached by that announcement, while allowing for a less tightly defined

objective for the remaining part. Overall, our results suggest that fully revealing the inflation

target can deteriorate macroeconomic performances, even in a setting whose core features – i.e.

learning and heterogeneity – would a priori lead to think favourably about CB’s transparency.

The remainder of the paper is organized as follows. Section 2 presents the ABM. Section 3

explains the simulation protocol and gives insights into the main mechanisms at work in the

model. Section 4 discusses the results and Section 5 concludes.

2 The model

2.1 General features

This model elaborates on the macroeconomic ABM first introduced in Salle et al. (2013). This

ABM shares several general features of the baseline NK framework (see Woodford (2003, Chap.

4)). Labour is the only input, used to produce a perishable good, and the goods market op-

erates under imperfect competition. The price/wage adjustments are characterized by nominal

rigidities. Inflation is driven by both aggregate demand and inflation expectations, in line with

the NK Phillips curve. The two usual transmission channels of monetary policy then result: the

consumption and the expectations channels. The CB uses a Taylor rule to set the interest rate.

The economy is populated by n households, indexed by i 2 [1, n], a single firm summarizing

the supply side, and a CB. The sequence of events is as follows. First, the labour market

allocates households’ labour supplies to the firm. The quantity of hired labour determines the

unemployment rate, the firm’s goods supply, its labour costs and the corresponding price, as well

as households’ labour income. Second, households choose their consumption and savings/debt

strategy. In a third step, the goods market determines the allocation of the goods supply to each

household. This allocation dictates the firm’s profit and each household’s utility. Fourth, agents

update their individual behaviour and inflation expectations. Finally, the CB sets the nominal

interest rate for the next period, and the story starts all over again.

2.2 Households

Households supply labour and consume according to two simple rules of thumb. To implement

those two rules, they need to forecast inflation. Moreover, they adapt those rules according to

a social learning process, and update their inflation forecasts on the basis of the realization of
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inflation and the CB’s announcements.

2.2.1 Individual behaviour

Labour supply In each period, each household is endowed with an inelastic labour supply

normalized to one, i.e. hsi,t = 1, 8t, i.4 This normalization allows to explicitly define unemploy-

ment in the model, and can be interpreted as a full-time occupation.5 Labour supply behaviour

is formulated in terms of a reservation wage. The heuristic rule that we choose introduces a

direct transmission channel of inflation expectations to the growth rate of nominal wages, and

hence to price inflation, leading to an expectation channel of monetary policy in the model. In

every period t, each household i sets its reservation wage following the first rule of thumb:

wi,t = wi,t�1 ⇥ (1 + 1(⇡e
i,t+1>0)�

w
i,t.⇡

e
i,t+1) (1)

Heuristic (1) indicates that households raise their reservation wage wi,t only if their inflation

expectation ⇡e
i,t+1 is positive (and, consequently, 1() = 1). A wage indexation process then pre-

vails, according to which households raise their wage by
⇣
�wi,t.⇡

e
i,t+1

⌘
. Otherwise, they keep it

unchanged (1() = 0). Wages are increasing with expected inflation, while being subject to nom-

inal wage downward stickiness (�wi,t > 0).6 In this set-up, coefficients �wi stand for the strength

of the wage-price inflation spiral. Coefficient �wi is the first strategy variable of households. Any

household faces a trade-off when choosing its strategy �wi : setting a high �wi , i.e. a high reserva-

tion wage, would induce higher wage payments, and a higher consumption level if the household

can be employed. However, at the same time, the probability of becoming unemployed rises,

as the firm first hires the less demanding households (see Sub-section 2.5). Furthermore, the

higher inflation, the higher the cost in terms of purchasing power of under-indexation, and the

higher the incentive of the household to set an indexation coefficient at least equal to unity. This

relationship between expected inflation and indexation coefficients is investigated in details in

numerical simulations in Section 3.

Consumption In each period, each household receives a nominal income given by:

yi,t = wi,thi,t +⇧t�1
1

n
+ bi,t�1(1 + it�1) (2)

4Lower case symbols stand for individual variables, and upper case symbols for aggregate ones. s and d

superscripts indicate respectively supply and demand variables.
5this is usual in ABMs, see, among others, Delli Gatti et al. (2005) or Dosi et al. (2010).
6See e.g. Oeffner (2008) or Raberto et al. (2008) for comparable assumptions.
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where hi,t  hsi,t is the actual labour supplied by household i after the matching process in the

labour market, wi,thi,t is then the corresponding labour income, ⇧t�1/n the share of the last

period’s total nominal profits evenly distributed among households, it�1, the nominal riskless

interest rate set by the CB. bi,t�1 stands for the nominal holdings (positive in case of savings

and negative in case of debt), and is simply given by the difference between actual consumption

expenditures and current income after the matching in the goods market.

In line with the consumption behaviour described by the Euler equation in NK models, we

assume that households desire to smooth their consumption path. Accordingly, each household

computes a proxy of its permanent income, as defined by Friedman (1957, Chap. III), as a

moving average of its past incomes:

ỹi,t ⌘ (1� ⇢)yi,t + ⇢ỹi,t�1 (3)

where ⇢ 2 [0, 1[ is a memory parameter common to all households. Each household then intends

to consume a share di,t > 0 of its permanent income. Formally, the demand for the goods of

each household i in period t is expressed as:7

cdi,t = di,t.ỹi,t where di,t 2 [d, d̄] (4)

Households adjust their consumption rate, di,t, according to the second rule of thumb. We

specify a counterpart of the standard Euler condition where the real interest rate dictates con-

sumption and savings decisions:8

di,t = di,t�1 � �di,t(it � ⇡e
i,t+1 � rnt ) (5)

The adjustments of di,t depend on the gap between the current real interest rate expected by

household i, i.e. it � ⇡e
i,t+1 and the natural (real) rate rnt (assumed to be zero in numerical

simulations). Accordingly, monetary policy influences aggregate demand through the nominal

interest rate, and, for a given level of inflation expectations, the real interest rate. The coefficient

�di,t 2 R is the households’ second strategy. As soon as �di,t > 0, consumption decreases when

7In DSGE models, transversality conditions are imposed to avoid explosive dynamics in the bond accumulation
process. Such restrictions cannot be set in our model, in which we have to impose period-by-period constraints. In
that respect, we impose an upper limit d̄ > 1 to the consumption adjustment rate d, in order to rule out excessive
debt and household defaulting, and we impose a lower bound d > 0 to ensure minimal subsistence consumption
at each period. This way, consumption cannot be driven to zero.

8We depart from the behavioural rules introduced in the literature on learning about consumption (see the
seminal contribution of Allen & Carroll (2001)). This is because this literature seeks to explain how households
may learn to smooth their consumption path over time assuming a constant nominal interest rate and a zero-
inflation world, while we aim here at specifying the consumption channel of monetary policy through changes in
the real interest rate.
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the real interest rate rises, and we obtain the standard consumption channel of monetary policy

through the substitution effect. Otherwise (i.e., when �di,t < 0), the income effect dominates

and the consumption channel is reversed. Both effects have been emphasized as plausible in the

empirical literature (see Oeffner (2008, p. 83) for a review).

2.2.2 Adaptation through social learning

Following the assumption of perpetual learning, the two strategies �wi,t and �di,t are updated at the

end of each period through a simple form of a genetic algorithm involving two learning operators:

a social learning mechanism (imitation) and random experiments in the strategy space.9

Imitation is based on households’ performance, that is measured by smoothed utility:

ũi,t = (1� ⇢)ui,t + ⇢ũi,t�1 = (1� ⇢)
tX

l=0

⇢t�lui,l (6)

where u(ci,t) ⌘ ln(ci,t) in the numerical simulations and ⇢ is the same memory parameter as

in Equation (3). The use of a smoothed measure denotes a concern for the persistence in the

performances. In each period t, with a probability Pimit, a household i imitates the strategies

(�wj,t, �
d
j,t) of another household j 6= i. The household to be imitated is chosen with a roulette-

wheel selection process. Formally, the probability of household j to be imitated is proportional

to its relative utility in the households’ population:

exp(ũj)Pn
l=1 exp(ũl)

(7)

where the exponential function is set to cope with negative utility values. Consequently, better

strategies in terms of utility are favoured by the selection process, and they tend to replace less

performing ones among the population of households.

With a probability Pmut, a household can also perform a random experiment, in order to

potentially discover better strategies than those already present among the households’ popu-

lation. In this case, it draws a new �wi,t+1 coefficient from a normal distribution with the mean

equal to the average of the coefficients �wi,t across all households, and a given standard-deviation

�w: N
⇣Pn

l=1 �
w
l,t

n ,�w

⌘
. We truncate the draw at zero, as negative indexation coefficients are

not relevant. The new strategy �di,t+1 is also drawn from a normal distribution, with a given

standard deviation �d: N
✓Pn

l=1 �
d
l,t

n ,�d

◆
, but this draw does allow for negative coefficients, as

both substitution and income effects are plausible (see Equation (5)).
9See, notably, Holland et al. (1989) and Sargent (1993) for general statements, Arifovic (2000) for a survey in

macroeconomics.
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With a probability 1� Pimit � Pmut, the household keeps its strategies (�wi,t, �
d
i,t) unchanged

for the next period t+ 1.

Parameters �d and �w can be interpreted in terms of shocks: they control the endogenous

variability in the model, which arises from the heterogeneity in the individual behaviour and its

evolution through the learning process.

High values of �d are associated with a high level of uncertainty about the way monetary

policy transmits to aggregate demand (see Equation (5)). That situation is akin to model

uncertainty in the related literature about monetary policy under uncertainty and we refer to

it as such in the paper.10 Variability induced by �w directly translates into variability in the

inflation process through the wage-indexation scheme, and leads to similar effects on inflation

dynamics as cost-push shocks (see Equation (1)). Values of �w higher than unity generate second-

round effects that fuel a wage-price inflation spiral, and may give rise to a stabilization trade-off

between the level of inflation and the level of output.

From the preceding, it should be clear that households’ inflation expectations play a central

role in the economic dynamics in our model: i) they determine the ex ante real interest rate,

through which the CB affects aggregate demand, and ii) they feed the inflation dynamics, and

can endogenously drive the inflation process. For these reasons, it becomes important that the

CB acts as a manager of expectations (Woodford (2003)).

2.2.3 Inflation expectations and CB’s announcements

We assume an inflation expectation formation mechanism that integrates jointly credibility and

coordination issues, as in Demertzis & Viegi (2009).11 We distinguish between two regimes: IT,

in which the CB announces to all households the inflation target ⇡T and the radius of tolerance

around it +/�⇣, and non-IT, in which none of these parameters is announced. Unlike Demertzis

& Viegi (2009), our ABM explicitly models heterogeneous expectations, and the question of

coordination naturally arises.

Under IT, agents assess the credibility they attribute to the CB by evaluating its past per-

formances in terms of inflation over a finite number of past periods, denoted by window. In each

period in which past inflation has been contained between the announced range
⇥
⇡T � ⇣,⇡T + ⇣

⇤
,

10See, for instance, Brainard (1967) for a standard reference and Söderström (2002) and Giannoni (2007) for
recent treatments.

11On the credibility issue, our expectation model shares also common features with Bomfim & Rudebusch
(2000), Alichi et al. (2009) and Libich (2011). See also Arifovic et al (2010) for a private inflation expectations
formation process that is partially based on adaptive learning and takes the announcement of an inflation target
by the central bank into account.

8



they consider the CB as successful. If the CB has been successful in x periods over the last

window periods, they compute their perceived credibility, denoted by Ptarget, as Ptarget =

x
window 2 [0, 1]. Each household then determines its inflation expectation as follows:

⇡e
i,t+1 ,!

8
><

>:

U(⇡T � ⇣,⇡T + ⇣) with probability Ptarget

⇡t + ⇠i with probability 1� Ptarget

(8)

where ⇠i is an i.d.d. noise with mean zero and variance �⇠. The first case in Equation (8) is

in line with the definition of credibility given in Faust & Svensson (2001), as the gap between

the inflation target and the average inflation expectations. Our expectations scheme allows for

the emergence of a credibility-success loop: the more successful the CB, the higher Ptarget, the

closer to the target inflation expectations, and the more likely inflation to be contained in the

announced range. The reverse is true in the case of a credibility loss. Moreover, the radius of

tolerance around the target, ⇣, plays an ambivalent role: the wider the radius (i.e. the higher

⇣), the more likely past inflation rates to fall within the range, and the higher, ceteris paribus,

Ptarget. However, the higher the range, the less clear the focal point, and the more heterogeneous

agents’ expectations. Section 3.2 below illustrates this mechanism in the numerical simulations.

The second case of Equation (8) corresponds to naive (noisy) expectations12, that well account

for the unanchoring process of inflation expectations when credibility is weak.

Under non-IT, we assume that households use the average inflation rate over the last window

periods as a reference point to evaluate inflation performances, instead of the target, because

they do not know it.13 This is the only difference between the two regimes. Each household then

determines its inflation expectation as follows:

⇡e
i,t+1 ,!

8
><

>:

U(⇡̃t � ⇣, ⇡̃t + ⇣) with probability Ptarget

⇡t + ⇠i with probability 1� Ptarget

(9)

where ⇡̃t is the average inflation over the last window periods. Admittedly, the radius of tolerance

⇣ under non-IT is not a choice of the CB, and finds a slightly different interpretation than under

IT: the radius of tolerance is the tolerance that households use to determine whether inflation

has been far or close to its past average value.

The choice of the inflation expectations formation process under non-IT is made for various
12See De Grauwe (2011) for a comparable mechanism
13We could have considered a noisy target but our focus is on credibility issues of the announcement and the

way the CB can use it to manage expectations, that is why we do not want to add issues of clarity, which have
been tackled in Salle et al. (2013).
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reasons. First, it allows for a credibility-success loop as under IT, although it does not provide an

anchoring device around the target as such (we follow on that point an extension of their model

that is suggested by Demertzis & Viegi (2009, p. 31)). Second, Equation (9) translates the lack

of anchor in the absence of an explicit inflation target. In our model, if the CB meets its target,

the average past inflation remains close to the target, and non-IT resembles IT. However, a series

of failures in keeping inflation close to the target pulls average inflation away from the implicit

inflation target, and contributes to further drive inflation expectations away from the target. It

should be further noted, as illustrated in Section 3.2, that this design of non-IT results in the

same amount of heterogeneity in expectations under IT and non-IT by construction (for given

values of Ptarget and ⇣), which allows for a fair comparison of their relative performances. Third,

as stressed in an experimental study by Roos & Schmidt (2012), past trends of macroeconomic

variables are a key determinant of forecasts when laypeople, like households, are concerned.

Eventually, the specification we use translates the Keynesian notion of "market sentiment",

which has been modeled in the context of monetary policy by Canzian (2009) or De Grauwe

(2011).

From the preceding, it ensues that, in our set-up, the benefit from announcing the target

mainly arises from the potential anchoring effect on households’ inflation expectations. Other

economic effects of transparency have been considered in the literature. We do not take them

into consideration as such in this paper however. For example, the role of policy objective an-

nouncements as an implicit commitment device has been stressed in models where the CB has

an incentive to create inflation surprises (see, for example, Walsh (1995)), which is not the case

in the framework we consider. Furthermore, in our model, households do not rely on interest

rate changes to forecast inflation in the absence of an explicit inflation target, so that we cannot

address the so-called opacity bias (see Walsh (2010)). Finally, in our model, coordination is not

made attractive as such, because the utility function depends only on consumption, but house-

holds’ expectations indirectly influence other households’ consumption.14 They have therefore

a collective interest in coordinating their inflation expectations. Coordination could also be as-

sessed with respect to the performance of agents’ learning. As strategies �wi,t and �ki,t are directly

related to individual inflation expectations, one could expect that the social learning mechanism

would yield better performances if it takes place in an environment where agents hold comparable

beliefs on the future. Coordination could thus favour learning.

We now turn to the description of the rest of the model.
14For instance, if most agents anticipate a rise in inflation, actual inflation will rise next period through the ex-

pectations channel. Agents who did not expect that rise may lose purchasing power, both through a misassessment
of the real rate of return of their savings and an under-indexation of their reservation wage.
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2.3 The firm

2.3.1 Production and price setting behaviour

When the labour demand of the firm (see Section 2.3.2) meets the labour supply of households

in the labour market (see section 2.5), the rationing mechanism determines the actual quantity

of labour (Ht) that the firm hires, and the corresponding wage bill. The firm uses that quantity

to produce goods through a standard production function (see, for example, Gali (2008)):

Y s
t = AtH

1�↵
t (10)

where ↵ 2 [0, 1[ encompasses decreasing returns, At is the technology factor.15 The only pro-

duction costs of the firm result from the wage bill:

 (Y s
t ) =

nX

i=1

hi,twi,t (11)

and we can compute the nominal aggregate wage level, as a weighted average of individual wages,

i.e. Wt ⌘  (Y s
t )

Ht
.

The firm sets its price P , according to a mark-up µ on the marginal cost, and the resulting

price is given by:

Pt =
(1 + µ)

(1� ↵)

 (Y s
t )

Y s
t

(12)

Price is an increasing function of the production Y s as soon as 0 < ↵ < 1.

The rationing mechanism in the goods market (see section 2.5) determines the quantity that

the firm actually sells to households (Yt), which gives its corresponding profit:

⇧t = PtYt � (Y s
t ) (13)

2.3.2 Adaptation of the goods supply

The firm behaves in an adaptive way, and updates, in each period, its labour demand strategy

Hd
t .16 As there is a single firm, it cannot benefit from social learning and can only learn through

an individual learning process. We consider a simple adaptive mechanism, much in the spirit of

gradient learning (see for example Leijonhufvud (2006, p. 1631-32) or Delli Gatti et al. (2005)).
15We assume a deterministic natural production level, we set At = 1, 8t (the long run value of the technology

assumed by Woodford (2003, p. 225)).
16If we overlook potential rationing, having a labour demand or a good supply strategy is equivalent from the

firm’s point of view, as labour is the only input (see Equation (10)). Through the mark-up price setting (12),
adjusting price is also equivalent to adjusting quantities, so that the firm has actually only one decision-making
variable, expressed here in terms of labour demand.
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We assume that the firm takes its unsold quantities, if any, as a proxy of the demand it faces,

and specify the rule:17

8
><

>:

If unsold quantities, Hd
t+1 = Ht ⇥ (1� ✏)

Otherwise, Hd
t+1 = Ht ⇥ (1 + ✏)

(14)

where ✏ > 0 is a parameter which denotes a (small) adjustment rate. The next period’s labour

demand is slightly increased compared to the current quantity of labour hired Ht in case all goods

have been sold, or slightly decreased otherwise. As unsold quantities are a loss on the firm’s

profit, and profit is increasing with sold quantities, the rule (14) ensures that the adjustment

mechanism, while simple, always works into the direction of profit increase.

2.4 Monetary authority

The CB reacts to both inflation and the level of activity, and sets the nominal interest rate it

according to a non-linear Taylor (1993) instrumental rule.18

1 + it = (1 + ⇡T )(1 + rnt�1)

✓
1 + ⇡t�1

1 + ⇡T

◆�⇡
✓

1 + u⇤

1 + ut�1

◆�u

(15)

where ⇡T stands for the inflation target, u⇤ for the natural rate of unemployment, and �⇡ > 0 and

�u > 0 are the reaction coefficients to inflation and unemployment rates. The rule incorporates

the unemployment rate, as we are able to explicitly derive it from the model (see also Orphanides

& Williams (2007)). We assume u⇤ = 0 and the CB targets a full employment state.

2.5 Aggregation and dynamics

Markets do not necessarily clear because price and wage strategies are not set a priori so as

to make agents’ strategies mutually consistent. Markets instead confront aggregate supply and

aggregate demand according to rationing mechanisms.

2.5.1 Labour market

Aggregate demand for labour is the firm’s strategy Hd
t , while aggregate supply is given by:

Hs
t =

nX

i=1

hsi,t = n (16)

17See for instance Seppecher (2012) or Assenza et al. (2015) for a similar assumption.
18We consider the non-linear form of the rule rather than the log-linearised version, given the non-linear dy-

namics of our framework, see Ashraf & Howitt (2012) for a comparable specification.
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The two are matched according to a process that is designed to be consistent with the firm

aiming at minimizing its production costs: the firm hires households by increasing reservation

wages.19 The aggregate hired labour is then set as:

Ht = min(Hd
t , n) =

nX

i=1

hi,t (17)

The corresponding unemployment rate is computed as ut =
n�Ht

n . The real wage rate is given

by ! ⌘ Wt
Pt

= (1�↵)
(1+µ)H

1�↵
t , decreasing with H.

2.5.2 Goods market

Aggregate goods supply Y s
t is given by the production function (10) and the aggregate goods

demand is given by the sum of individual ones (see Equation (4)). The two are confronted ac-

cording to an efficient rationing mechanism: households are ranked by decreasing goods demand,

so that the firm first faces the highest demand. This mechanism stands for the counterpart of

the standard assumption of households aiming at maximizing their utility, derived from their

consumption. If a household is rationed, it buys bonds b with its remaining cash. Inflation ⇡t is

computed as ⇡t =
Pt�Pt�1

Pt�1
.

2.5.3 Inflation dynamics

We show in Salle et al. (2013) that the Philips curve in our ABM can be made explicit. First,

notice that, through Equation (1), we have:

�wi,t = 1(⇡e
i,t+1>0)(�

w
i,t⇡

e
i,t+1wi,t�1) � 0 (18)

and, by using the expression of the price (12) and the aggregate labour costs (11), and noticing

that �H ⌘
Pn

i=1�hi, we obtain:

⇡t ⌘
�Pt

Pt�1
=
� 

 t�1
� (1� ↵)

�H

Ht�1

=

Pn
i=1�wi,thi,t�1

 t�1
+

nX

i=1

�hi,t
Ht�1

✓
wi,t�1

Wt�1
+ ↵� 1

◆

) ⇡t = ⇡(⇡e
t+1
+

, Y S
t
+
) (19)

19Households are then either fully employed, i.e. hi,t = 1, or fully unemployed, i.e. hi,t = 0, except for the last
hired, who can be only partially unemployed i.e. hi,t < 1.
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Figure 1: Summary of the ABM’s dynamics

where ⇡e
t+1 refers to the average inflation expectation among households, and �hi,t / �Y S

t . In

our ABM, the Phillips curve (19) does incorporate nominal rigidities, allowing for real effects of

monetary policy in the short run.

Figure 1 summarizes the model’s dynamics. We now describe the simulation protocol.

3 Model simulations and emerging dynamics

The ABM outcomes are analysed through a large number of computer simulations that are

implemented over different sets of parameter values. In this section, we first describe the method

we have adopted to determine these parameter values. We then carry out a first assessment of

the mechanisms at play in the ABM on the basis of the emerging dynamics and salient features

that arise from the computer simulations. We finally perform an exercise of empirical validation,

and show to which extent the ABM is able to account for the stylised facts that are key for the

issues covered in this paper.

3.1 Parameter setting and simulation protocol

The structural parameters that underlie the microfoundations of the economy have been set

according to standard values in the NK literature (see, notably, Woodford (2003)). As for the

consumption bounds (d and d̄), the adjustment rate of the firm ✏, the number of households n

and the length of the simulations T , we set their value by relying on results of intensive sensitivity
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analyses performed on the model to allow for a first screening of the parameter space.20 This

screening has been performed by following the validation procedure proposed by Klügl (2008),

that consists in a successive sub-sampling of parameter values and systemic analyses of the

plausibility of emergent dynamics vis-Ãă-vis the specific research question at hand.21 This

procedure results in a so-called minimal model, i.e. a model that incorporates the minimum set

of assumptions and parameters to design consistent mechanisms regarding a specific research

question. In particular, we checked whether the choice of specific parameter values (or ranges of

values) did significantly affect or not the dynamics generated at the micro or macro level, and

whether the simulation of the model did lead to degenerate patterns that reflect an inconsistent

behavior of the agents or the economy as a whole.22 During this step, we specifically observed

that i) the size of the macroeconomic variables is plausible, ii) aggregate welfare is increasing and

stabilises, indicating that learning is efficient, iii) explosive dynamics of real variables are ruled

out. Accordingly, we use n = 500 households and T = 800 periods. We further set �⇠ ⌘ �w
40 ,

meaning that the variance of the noise ⇠ is related to the variance of the proxy for supply shocks

�w (where 40 is a scaling parameter). It is a rather intuitive modelling device: the more unstable

the economy is (i.e. the bigger the shocks affecting the inflation rate are), the further from

the objective the inflation rate is likely to be and the more difficult it is to stabilize inflation

expectations. This assumption is also made for the sake of parsimony in the parameter set.

Importantly, this feature is identical under IT or under non-IT, so that the noise in inflation

expectations does not vary exogenously under the two regimes.

Following that stage, we are left with the determination of the values to be taken by eight

parameters, namely window, Pmut , Pimit, �d, �w, �⇡, �u and ⇣ . It is not a coincidence as those

parameters are supposed to be key regarding the interplay between the learning environment,

the inflation expectations dynamics and the monetary policy strategy we want to focus on.

We use a design of experiment (DoE)23 to cover the space of those remaining parameters and

set their values accordingly. Large sampling methods such as Monte Carlo simulations come

indeed at a computational cost if there are numerous parameters with large experiment domains,

which is a priori our case. DoE allow us to minimize the sample size under constraint of

representativeness. We use the design proposed by Cioppa (2002) and provided by Sanchez
20Results are not displayed here but the whole validation procedure is detailed in the PhD thesis of the main

author, see Salle (2012).
21To the best of our knowledge, it has been only applied to ABMs in economics in Oeffner (2008) and Salle

(2012).
22 For this reason, we rule out parameter values such that ✏ > 0.05, d̄ > 2 and d < 0.2. Other values of this

parameter have been found to have little, if any, influence on aggregate emergent dynamics.
23See, for example, Goupy & Creighton (2007) for a introduction. This method is widely used in computer

simulations in areas such as industry, chemistry, computer science, biology, etc.
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(2005), which efficiently combines space-filling properties and the non-correlation criteria between

parameter configurations, which avoids multicolinearity issues in the analysis of the results. The

design is reported in Table 5 in Appendix A. Each given set of parameter values (i.e for each

configuration or experience) is simulated 30 times, in order to account for the non-deterministic

nature of the model. The simulation setting is kept the same for IT and non-IT, in order to

provide a relevant comparison of the outcomes and dynamics of the model over those two regimes.

As for the outcomes, we summarize the CB’s performances with a usual loss function (see

for example Svensson (1999)):

L(⇡, u) = (⇡ � ⇡T )2 + u2 (20)

where the inflation rate ⇡t and the unemployment rate ut are measured for each run as the

average over the whole simulation, with a 100 period burn-in phase.

3.2 Emerging dynamics and salient features

We first assess the model outcomes on the basis of a regression tree (see Figure 2) that reports the

main determinants of the values of the loss function over the whole set of simulations implemented

under IT and non-IT.

The results indicate that the distinction between IT and non-IT matters for the stabilisation

outcomes obtained by the monetary authorities. However, the stabilizing role of IT appears to

be also affected by other parameters, namely the two monetary policy coefficients �⇡ and �u, the

bandwidth of the range around the target ⇣ as well as to the features of the learning dynamics

via the importance of the learning shocks (especially �w).24 In Section 4, we therefore focus on

those parameters specifically (thus fixing the other ones) and examine attentively their interplay

with the features of IT and non-IT.

More precisely, the regression tree indicates that an IT regime coupled with a relative large

radius (higher than 0.75 %) yields overall the lowest expected average loss (0.085), while an IT

regime coupled with a narrow range (no more than 0.75%) yields the highest loss (0.509) in a

strongly volatile inflationary environment (i.e. with a higher than 0.32 value of �w). Those two

results suggest that the magnitude of the radius bears a strong influence on the stabilisation

performances of an IT regime, which, however, depend also on the volatility arising from the

learning environment.

To go further into the assessment of the role of the target range, Figure 3 plots the distri-
24A special case obtains when the number of past observations used to forecast inflation (window) does not

exceed 5 periods (the lower bound of the interval we have retained). This is the case in 3 among the 33 con-
figurations. In that case, the expected loss is high, probably because the expectations formation process is very
reactive to changes in the inflation process.
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0.214

n = 300

0.148

n = 90
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n = 90

0.189

n = 60
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n = 120

�u < 0.2

�w < 0.32

�⇡ >= 1.2 regime=non-IT�u >= 0.25

Figure 2: Regression tree (based on an ANOVA) of the loss values as a function of the regimes
(IT vs. non IT) and the parameters of the DoE given in Table 5 in Appendix A. Only branches
that contribute at least to 5% of the variance of the loss values are displayed.

butions of various variables of interest for every value of ⇣ retained in the DoE. This is done

for both the IT and non-IT cases. As Figure 3 clearly shows, the role played by the radius

under IT hinges on a trade-off between a coordination and a credibility motive. Under IT, the

value of the radius comes along with a compromise between providing a clear signal in order to

coordinate heterogeneous individual expectations (with a narrow range) on the one hand, and

allowing for a less tightly defined objective to be met (with a wide range) which could enhance

credibility, on the other hand. Which aspect of this compromise dominates for the stabilisation

performances under IT does also depend on the volatility in the micro behaviour created by the

learning environment. This point will be more particularly investigated in Section 4. By looking

at the inflation gap as a function of ⇣, we see that this trade-off stands out less clearly under a

non-IT regime.

One of the main objectives of this section is to identify the main mechanisms that underlie

the impact of IT on the economy for different parameter configurations. We establish two main

results.

First, the stabilisation benefits associated with IT do come along with the emergence of a

credibility-success loop. Figure 4 illustrates this mechanism in experiment 13. This experiment

has been chosen because it corresponds to a configuration where IT overperforms non-IT, as

depicted in Figure 2 (i.e. window> 5 and ⇣ > 0.75%). Under IT, we observe that inflation

expectations are very well anchored to the target which does help the monetary authorities to

keep the inflation rate in the range. As a consequence, the credibility can be maintained at a

high level which does positively feedback into the formation of expectations. What is important,

given the structure of the ABM, is to observe that the anchoring dynamics of expectations shows

a stabilising interplay with the learning process of the agents at the micro-level. Higher values

for coefficients of substitution regarding the consumption channel of monetary policy (�d) are
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Figure 3: The role of the radius around the inflation target under IT and non IT.
Boxplots depict the distribution of the average inflation expectations among households(mean (⇡e)), their variance
(var (⇡e)) and the credibility measure probtarget over the whole simulations (33 ⇥ 30 = 990 runs per regime).
Each one is measured every 50 periods, i.e. t = 100, 150, ..., 750, 800.

found to emerge over time under IT (compared to non-IT). This situation clearly favours the

transmission of monetary policy through the real interest rate, and hence the stabilization of

inflation, as coefficients �di,t directly measure the reactivity of individual consumption decisions

to the level of the real interest rate (see Equation (5)). In turn, this configuration does back the

anchoring process of the inflation expectations to the target. As for the indexation coefficients
⇣
�wi,t

⌘
, they stabilise at a level which is less than one, which rules out emergent self-reinforcing

price-wage inflation spirals. Therefore, the expectation channel does reinforce the stabilising

effects of the inflation expectations anchoring on the inflation process itself.

Our second result shows that IT does not necessarily allow for the emergence of a credibility-

success loop, and a non-IT regime can overperform an IT regime. Figure 4 illustrates this problem

using Experiment 3. This experiment is characterised by a strong volatility of the learning process

regarding the wage indexation coefficients (�w > 0.32), which directly impinges on the inflation

process (and thus can be assimilated to a cost-push shock). Moreover, the radius around the

target is low (⇣ < 0.75%). According to the regression tree 2, under that configuration, a non-IT

regime over-performs an IT regime.

As Figure 4 lets it clearly appear, inflation lies well above the target under both regimes

at the beginning of the simulations. We observe more volatile substitution coefficients under

IT (than under non-IT), which are moreover lower, and can be even negative. In that case,

the income effect dominates regarding the impact of interest changes on consumption, which

means that the usual consumption channel of monetary policy breaks down. In such a context,
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(a) Experiment 13
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(b) Experiment 3
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Figure 4: Dynamics in chosen experiments from the DoE given in Table 5.

and even more if the radius of tolerance around the target is narrow, the CB quickly looses its

credibility and the inflation expectations become unanchored. This unanchoring does in turn

amplify the volatility of the learning behaviour which feeds back negatively onto the stabilisation

of the inflation process, preventing the CB from benefiting from the credibility/success loop. This

explains why, under IT, the CB fails to bring back inflation within the targeted range.

On the contrary, under the non-IT regime, the monetary authorities manage to drive over
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time inflation expectations within the range, and the loss values are limited.

The overperformance of non-IT can be explained as follows: as the reference point of house-

hold’ expectations under non-IT is the average past inflation, it works as a moving anchor which,

under experience 3, decreases along the disinflationary path implemented by the CB. This allows

to channel inflation expectations, despite a narrow range of tolerance ⇣. By contrast, under IT,

inflation expectations are only driven by naive expectations, that extrapolate the decreasing path

of inflation along the disinflationary path. At the micro level, the variability of agents’ behaviour

appears much lower under non-IT than under IT, despite the fact that the shocks �d and �w are

the same. This means that the learning process stabilise the emerging substitution coefficients

�di,t at higher levels, with much less volatility, under non-IT than under IT, which makes the

consumption channel more powerful. Indexation coefficients are also saliently less heterogeneous

under non-IT, and stabilizes under unity, which contributes to stabilize inflation close to the

target.

As a final insight drawn from the overview exercise, we focus on the consumption and the ex-

pectations channels such as they emerge in the ABM from the micro behaviour of the households.

The top panel of Figure 5 shows the relationship between the average indexation coefficient �w

among households and the gap between average expected inflation rate and the target, under

IT (left panel) and non-IT (right panel). The general pattern is very similar under the two

regimes. It shows a structural change when indexation coefficients increase beyond unity: if

lower than unity, inflation expectations are stabilized around the target (the gaps are scattered

around zero), while, when increased beyond unity, an increasing relationship emerges between

the expected inflation and the indexation coefficients. This depicts potentially explosive wage-

price inflation spirals. This feature emerges from the learning process: the higher the expected

inflation rate, the more costly in terms of purchasing power for the households not to index

their reservation wage on the expected inflation. This in turns amplifies the rise in inflation, and

inflation expectations are driven away from the target. It seems that, under IT, expectations

remain anchored even if indexation coefficients rise beyond unity (but not a too high level) more

often than under non-IT. But this difference concerns few observations.

The bottom panel of Figure 5 reports the average consumption rate di,t among households

as a function of expected real interest rate. Under IT, it is clear than negative real interests

rate yield to higher than unity consumption rate (meaning that households are debtors), while

positive interest rates drive consumption rate towards the lower bound b, as households take

advantage of the higher return on savings to save, and decrease their current consumption. This

translates into positive coefficients �di,t (see Equation (5)), and indicates that the consumption
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Figure 5: Micro-founded expectations and consumption channels in the ABM
Each variable is measured every 50 periods, i.e. t = 100, 150, ..., 750, 800 in each run of the DoE given by Table
5.

channel of monetary policy is operational. Under non-IT, we observe a similar, even if less clear-

cut, pattern: more observations indicate that households have a lower-than-unity (resp. higher

than unity) consumption rate even if real interest rate are expected to be negative (resp. positive)

under non-IT than under IT. Again referring to the consumption rule (5), this translates in more

negative �di,t coefficients under non-IT than under IT, meaning that the consumption channel is

occasionally less effective under non-IT than under IT. However, it should be noted that Figure

5 pools all observations of the DoE 5 together, that embed a variety of situations, as illustrated

by Experiments 3 and 13 in Figure 4.

As a conclusion, the overview of the model performances indicates that the inflation target

announcement is not an unconditionally powerful tool to stabilise the economy. This depends

on the volatility stemming from the learning environment, the radius of tolerance around the

target and the monetary policy rule. We provide a detailed examination of how those elements

interact in Section 4.

3.3 Empirical validation of the model

We now define a baseline scenario in which we fix the values of the parameters for which the

regression tree 2 does not report any significant influence on monetary policy performances. The

parameter values are given in Table 1. We use standard values in the learning literature for the

probabilities of imitation and mutation (see e.g. Lux & Schornstein (2005)) and for monetary

policy (see e.g. Taylor (1993)).

In line with recent developments in ABM25, we confront the baseline scenario to selected
25See, notably, Dosi et al. (2010), Lengnick (2013), Assenza et al. (2015).
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n T Pimit Pmut �d �u �⇡ ⇡

T

500 800 0.1 0.02 0.15 0.2 1.5 0.02

✏ ↵ µ window �W �⇠ d̄ d

0.01 0.25 0.1 20 0.15 �W /40 1.5 0.5

Table 1: Parameter values under the baseline scenario.

related empirical regularities. As the paper focuses on the interplay between inflation expec-

tations, CB’s credibility and macroeconomic stabilization, the following empirical features have

been focused on regarding the assessment of the predictive properties of the ABM. Figure 6

displays the joint evolution of inflation and inflation expectations, and statistical properties of

inflation distribution in New Zealand between 1988 and 2012, and in UK between 1997 and 2013.

Those countries have been chosen because they have been pioneers in inflation targeting (imple-

mented in 1989 in New Zealand and in 1992 in UK26), and they have been conducting surveys of

inflation expectations since then (we use the J6 survey of inflation expectations available on the

RBNZ website and the GfK NOP Inflation Attitudes survey available on the Bank of England’s

website).

Three stylized facts are particularly relevant for our purpose.27 First, inflation and inflation

expectations are strongly and positively correlated, suggesting the predominance of the expec-

tations channel (see also Woodford (2003)). Second, inflation is characterized by a non-normal

distribution with fat tails: the distribution displays excess kurtosis, indicating that values far

from the mean are more frequent than under a normal distribution, and the distribution is right-

skewed, meaning that inflation rates are more often strongly higher than strongly lower than the

average (see also De Grauwe (2012) for a comparable analysis). Third, we compute an index of

inflation target credibility for those two countries, in line with Faust & Svensson (2001)’s defi-

nition of credibility as negatively related to the distance between agents’ inflation expectations

and the CB’s announced target.28 In the ABM, credibility is modelled as the fraction of agents

who believe that inflation will be contained in the range, and is not directly comparable to the
26An inflation target were first announced in September 1992 in UK, but the operational responsibility, which

implies greater independence and credibility has been given to the Bank of England in May 1997.
27We have also shown that inflation time series in our model display a significant autocorrelated pattern. This

result sounds natural as the micro behavioural rules in the ABM prescribe to adjust past behaviour, which by
construction involves inertia in the model dynamics. Those additional results are available upon request.

28More precisely, we use de Mendonca (2007)’s credibility index, which accounts for the range of tolerance
around the target:

credibility index =

8
><

>:

1 if E(⇡) = ⇡

T

1� E(⇡)�⇡T

⇢ if ⇡T � ⇢  E(⇡)  ⇡

T + ⇢

0 if E(⇡) > ⇡

T + ⇢ or E(⇡) < ⇡

T � ⇢

(21)

We apply the same index to both countries to make the comparison easier, although the UK does not announce
a range around the target. However, an implicit range of ±1% may prevail, as the Governor is held to account
through an open letter to the Chancellor if the target is missed by more than 1%.
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values of de Mendonca (2007)’s index. Nevertheless, both measurements have the same interpre-

tation: credibility varies between 0 (no credibility) and 1 (full credibility), and they are sufficient

to highlight the third empirical regularity under interest: credibility and inflation performances

appear highly correlated, lower credibility leading to a higher inflation gap.
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(a) New Zealand over 1987Q1-2012Q4. Left panel: evolution of inflation and inflation expectations, middle panel:
inflation distribution (source: RNBZ), right panel: credibility index distribution (authors’ calculation).
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Figure 6: Empirical data of two inflation targeting countries.

cor(⇡,⇡e) skewness (⇡) kurtosis (⇡) cor(credibility,⇡ � ⇡T )

ABM mean 0.923 0.711 1.57 -0.384

(baseline t-test, H0 : mean > 0 mean < 0

scenario) p-value 0.0000 0.0000 0.0119 0.0000

UK (1997Q2-2013Q1) 0.825 0.9622 0.2344 -0.682

NZ (1987Q1-2012Q4) 0.875 1.535 2.082 -0.54

Table 2: Simulated data statistics, average over 100 runs, 800 periods, discarding the 100th first periods

(in order to rule out the effects of initialization).

We then run 100 replications of the baseline scenario, whose calibration is given in Table

1. Results are reported in Table 2. Well in tune with the previous empirical findings, our

model significantly reproduces the correlation between expectations and inflation, and the non-

normal distribution of inflation, both excess kurtosis and right-skewness. Importantly, we are
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able to provide a comprehensive explanation to these findings within the model, all the more

as this model is also able to account for the strong negative correlation between inflation target

credibility and inflation gap.

Finally, it should be noted that non-normality is an emergent property of the model, we do

not assume it beforehand. In our model, volatility results from the learning shocks, which are

obtained using normal draws, but the non-linear and decentralized nature of our model leads to

non-linear aggregate dynamics following these normal disturbances.

We conclude that our ABM is able to account for the stylized facts that are central to our

research question.

4 Optimal monetary policy under IT

Section 3 shows that the merits of IT are contingent upon the level of volatility conveyed by the

learning behaviour of agents. We now focus on this issue, and distinguish various environments in

terms of macroeconomic volatility so to analyse optimal monetary policy in such configurations.

We can characterize those environments using ranges of values for parameters �d and �w. We

first define a stable environment by setting �d = �w = 0.05. We then consider two levels of

model uncertainty – a moderate level, by setting �d = 0.25, and a high level by setting �d = 0.4

– as well as two levels of inflationary shocks – a moderate one with �w = 0.25 and a strong

one with �w = 0.4.29 When unchanged, the other parameters are kept at their baseline values

that are reported in Table 1. We measure the CB’s performance with a loss function as given in

Equation (20). The entire methodology we use to map the loss function values to the monetary

policy parameters in our non-linear ABM is detailed in Appendix B, and is based on Roustant

et al. (2010) and Salle & Yıldızoğlu (2014).

4.1 Transparency, variability and optimal monetary policy rule

We first characterize, both under IT and non-IT, the best monetary policy strategies (coefficients

�⇡ and �u) prevailing in the stable scenario, and in the alternative configurations of shocks. In

each of those configurations, we alternatively retain two radius levels, which correspond to either

a price stability objective as a single point (⇣ = 0.1%), or as a range (⇣ = 1%). Results are

reported in Table 3, that shows the optimal coefficients �⇤
⇡ and �⇤

u as well as the corresponding

minimum estimated loss L⇤.
29Those values belong to the range that has been analysed in Section 3, and, as shown below in the results of

the numerical simulations, those �d and �w values are high enough to imply significant deviations from the stable
case �d = �w = 0.05 in terms of loss function values.
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⇣ = 0.001 – IT ⇣ = 0.01 – IT ⇣ = 0.001 – Non-IT ⇣ = 0.01 – Non-IT
Stable scenario: {�w,�d} = {0.05, 0.05}
�

⇤
⇡ 2.66 4 4 2.91

�

⇤
u 0.117 0 0 0

L

⇤ 0.0129 0.0018 0.0061 0.0162
Moderate model uncertainty: {�w,�d} = {0.05, 0.25}
�

⇤
⇡ 4 0 4 3.8

�

⇤
u 0 2 0.97 1.49

L

⇤ 0.0137 0.008 0.011 0.0142
Strong model uncertainty: {�w,�d} = {0.05, 0.4}
�

⇤
⇡ 4 0 2.31 2.79

�

⇤
u 0 1.94 0.82 0.14

L

⇤ 0.0172 0.0123 0.0179 0.0284
Strong model uncertainty and moderate inflationary shocks: {�w,�d} = {0.25, 0.4}
�

⇤
⇡ 0.68 1.21 4 4

�

⇤
u 1.2 0.32 0 1.49

L

⇤ 0.092 0.0742 0.0252 0.0376
Moderate inflationary shocks: {�w,�d} = {0.25, 0.05}
�

⇤
⇡ 4 4 2.08 2.98

�

⇤
u 0 0 1.69 0.03

L

⇤ 0.072 0.041 0.022 0.025
Strong inflationary shocks: {�w,�d} = {0.4, 0.05}
�

⇤
⇡ 4 2.68 4 3.74

�

⇤
u 2 1.22 1.36 1.21

L

⇤ 0.0697 0.0572 0.0408 0.0487
Strong inflationary shocks and moderate model uncertainty: {�w,�d} = {0.4, 0.25}
�

⇤
⇡ 2.87 2.66 3.29 2.84

�

⇤
u 0.75 0 0.4 0.6

L

⇤ 0.08 0.075 0.0393 0.0374
Moderate inflationary shocks and model uncertainty: {�w,�d} = {0.25, 0.25}
�

⇤
⇡ 2.38 0.68 4 3.23

�

⇤
u 1.2 1.85 0 0

L

⇤ 0.0484 0.0472 0.045 0.029

Table 3: Optimal monetary policy (�⇤
⇡,�

⇤
u) and associated minimum loss L⇤, based of the opti-

mization of the kriging model of the CB’s loss as a function of �⇡ and �u.

Table 6 in Appendix A gives the design of experiments of the �⇡ and �u values that we have

used to estimate and validate the kriging metamodels that underlie our quantitative analysis,

and Table 8 in Appendix B reports the details of the estimation.

In the stable environment, an IT regime with a relatively broad range (⇣ = 1%) overperforms

a non-IT strategy. In the absence of adverse shocks, the CB may benefit from the credibil-

ity/success loop and stabilize inflation expectations and inflation. Nevertheless, with a very

tight objective (⇣ = 0.1%), credibility and success cannot be ensured, the IT regime looses its

attractiveness and its performances lie in the same range as the ones obtained under a non-IT

regime. The benefit that can be reaped from announcing a vague objective have been notably

emphasized by Stein (1989) and Garfinkel & Oh (1995), but in a theoretical framework that

incorporates time inconsistency issues. In such a setting, the CB can create surprise inflation by

announcing a wide range, which allows to depart from the target without loosing its credibility.
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In our model, the CB has no incentive to create inflation surprises but the learning environ-

ment may cause deviations of inflation and unemployment from their targets and put the CB’s

credibility at risk.

We interpret the values of the optimal rule coefficients in terms of a trade-off between the

two objectives of the CB. As long as the target is credible, expectations are anchored, and

movements of inflation reflects changes in production (cf. second term of Equation (19)). In this

case, the two objectives of the CB move in the same direction, and reacting to the deviation of

one from its target simultaneously moves the other one towards its target. In this case, there is

no trade-off between the two objectives of the CB, and the optimal monetary policy prescribes a

one-sided solution (with either �⇤
⇡ or �⇤

u being zero). As the expectations channel plays a strongly

dominant role in our ABM, it favours the role played, when credible, by the inflation target as

an anchoring device under IT, which does then act as a second monetary policy instrument that

stabilizes inflation (see Svensson (2010) for a similar interpretation). Monetary policy reaction

to inflation can become redundant, which can explain why the optimal reaction to inflation is

zero in some cases under IT with a wide range.30

By contrast, if expectations become unanchored, they drive inflation away from the target

(cf. first component of equation (19)), and movements in inflation do not reflect changes in

production any longer. In this case, a trade-off arises between stabilizing inflation and the level

of activity. The optimal monetary policy is then likely to be a two-sided solution, according to

which the CB has to react to both objectives.

Introducing higher variability in the consumption channel (i.e. increasing �d) deteriorates the

performances of the CB, across all regimes. For instance, under IT with a wide range, the loss

value of the CB is more than four times higher when �d = 0.25 (L⇤ = 0.008) than when �d = 0.05,

and almost 8 times larger when �d = 0.4 (L⇤ = 0.0123). Following our interpretation of the

optimal coefficients in terms of trade-off, model uncertainty does not create a trade-off between

the two objectives of the CB under IT, as the CB optimally adopts a one-sided reaction. With

a widely defined objective (⇣ = 1%), the credibility-success loop stabilize inflation expectations

better than with a narrow objective (⇣ = 0.1%), and the CB should only react to deviations of

unemployment.

Overall, in a moderate or high degree of uncertainty concerning the real transmission channel

of monetary policy, an IT strategy slightly overperforms a non-IT strategy, but only if it is
30It should be noted that the dynamics arising from the ABM cannot be exposed to determinacy issues, like in

the RE models, as ABMs simulate trajectories that are multiple by nature. Moreover, the hypotheses underlying
the construction of our ABM rule out the possibility of sun-spot equilibria, as inflation expectations only depend
on realized past inflation. Consequently, our results should not be compared as such to the ones stressing the
necessity of complying with the Taylor principle in the related literature on NK models (see, e.g. Bullard & Mitra
(2002)).
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implemented with a wide range (⇣ = 1%). With a tight objective (i.e. ⇣ = 0.1%), loss values are

fairly the same as under non-IT.

Under inflationary shock dominance (i.e. moderate or high �w), macroeconomic outcomes

strongly deteriorate. As explained in Subsection 2.2.3 (see, also, Equation (19)), this kind of

volatility does directly lead to variability in the inflation process. The CB is therefore highly likely

to miss its inflation objective, and lose its credibility. Consequently, expectations get unanchored.

Inflation becomes mostly driven by naive expectations, and is no more in line with the aggregate

demand stance. This phenomenon creates a trade-off between the CB objectives. This trade-off

translates into the optimal monetary policy reactions, which imply a strong two-sided reaction

to both inflation and the level of activity – see, also, Alichi et al. (2009) for a similar analysis

in the presence of cost-push shocks. Accordingly, optimal monetary policy implies, as soon as

inflationary shocks are strong enough (i.e. for �w = 0.4), a strong reaction to both inflation and

unemployment. In this case, it is clear that a non-IT strategy outperforms an IT regime. The

worst performances are obtained under IT with a tight objective: the loop between credibility

and success is strongly impaired, and loss values are much lower if the CB does not announce its

target than under IT.

If both model uncertainty and inflationary shocks coexist, again, performances deteriorate

compared to the cases with only one type of shock (i.e. either �w > 0.05 or �d > 0.5), and non-IT

outperforms IT, especially when accompanied by a tight objective. The trade-off between the

two objectives seems to be mitigated under non-IT as long as the two shocks are moderate (i.e.

in the case where �w = �d = 0.25, the optimal reaction under non-IT is a one-sided strategy).

Finally, in all the cases we have considered, we note that the optimal monetary policy rule is

always an aggressive one. This result goes along the lines of previous statements about optimal

monetary policy under uncertainty (see Schmidt-Hebbel & Walsh (2009) for a review). Model

uncertainty, i.e. uncertainty concerning the parameters which depict the transmission mecha-

nisms of monetary policy, characterizes our environment. It is a multiplicative uncertainty case,

as shocks on agents’ behaviour translate to inflation and economic activity in a non-linear way.31

There is no consensual answer to the question of optimal monetary policy in such a context. The

conservatism principle first established by Brainard (1967) prescribes a moderate rule. However,

when shocks and parameters are correlated, as it is the case in our model, the Brainard principle

does not hold. Other contributions call for an aggressive rule under other cases of "Brainardian"

uncertainty, for example when the CB cannot accurately estimate how inflation responds to in-
31In the case of multiplicative uncertainty, shocks impact the parameters of the model, and the noise is prop-

agated in a multiplicative way with the change in the variables under concern, by contrast to the additive
(uncertainty) case, in which shocks enter the model as a term that is added to the model equations.
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flation expectations (see Söderström (2002)). Moreover when radical uncertainty surrounds the

economic model, and is tackled through the tools of robust control theory, optimal monetary

policy rules are hawkish ones (Giannoni (2007)), especially when the CB cannot identify which

parameters are uncertain (Tetlow & von zur Muehlen (2001)). We also conclude in favour of

aggressive rules under model uncertainty, which primarily stems, in our case, from learning.

4.2 Can partial announcements overperform pure IT or non-IT regimes?

Some contributions to the debate about the optimal degree of transparency have analysed partial

announcements (see, among others, Cornand & Heinemann (2008) and Walsh (2009)). In those

works, it is assumed that only a fraction P 2 [0, 1] of agents receives the CB’s signal, i.e. the

so-called "degree of publicity" P can be lower than one. According to Cornand & Heinemann

(2008) this is the case when the CB chooses to provide news only in certain communities, or

in a language that is understood only by some. Furthermore, public announcements are in

general released through media, but each agent acknowledges a certain medium only with some

probability, so that a CB can choose the degree of publicity by selecting appropriate media for

publication. Agents may also have limited ability to process information, or may face costs to

acquire it, so that an immediate release does not necessarily turn out to be incorporated into

all agents’ decisions. Partial dissemination of precise public information may be an optimal

communication strategy in combining the positive effects of valuable information for the agents

who receive it with a confinement of the threat of overreaction by limiting the number of receivers

(Cornand & Heinemann (2008)). Walsh (2007b) also shows that the optimal degree of economic

transparency depends on the existence of cost-push or demand shocks.

In the same vein as those authors, we introduce partial dissemination of CB’s announcement

by defining the degree of publicity of the inflation target as the share of agents (P 2 [0, 1]) who

know the target, and use it to forecast inflation (see the mechanism depicted in Sub-section

2.2.3). Conversely, a share 1 � P of agents forms inflation expectations in the same way as

under non-IT. Following Demertzis & Viegi (2009), we also include in our experiments different

values of the radius ⇣ around the target. In order to keep the optimization problem to a two-

dimensional system, given the number of points of the DoE (see Table 7 in Appendix A), we

fix the monetary policy coefficients to standard values (i.e. �⇡ = 1.5 and �u = 0.5), and derive

the optimal announcement strategy (P, ⇣) in the scenarios previously considered. Results are

reported in Table 4, and details of the estimations in Table 9 in Appendix B.

In the stable scenario (i.e. {�w,�d} = {0.05, 0.25}), a low publicity of the target (i.e. P =

0.36), coupled with a medium range (0.7%) is optimal. However, the minimum loss obtained
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{�w,�d} = {0.05, 0.05} {�w,�d} = {0.25, 0.05} {�w,�d} = {0.4, 0.05} {�w,�d} = {0.4, 0.25}
⇣

⇤ 0.0068 0.0035 0.0064 0.0029
P

⇤ 0.36 0.91 0.51 0.6
L

⇤ 0.0015 0.0465 0.0522 0.0533

{�w,�d} = {0.05, 0.25} {�w,�d} = {0.05, 0.4} {�w,�d} = {0.25, 0.4} {�w,�d} = {0.25, 0.25}
⇣

⇤ 0.01 0.009 0.0051 0.0089
P

⇤ 0.91 0.65 0.45 0.87
L

⇤ 0.0107 0.0276 0.0444 0.0413

Table 4: Optimal announcement policy (degree of publicity P ⇤ and range ⇣⇤) and associated
minimum loss L⇤, based of the optimization of the kriging model of the CB’s loss as a function
of ⇣ and P (�⇡ = 1.5, �u = 0.5).

(roughly 0.005) fairly equals the one obtained under a pure IT regime (i.e. when P = 1, ⇣ = 1%

and �⇡,�u = {4, 0}, see Table 3). As a conclusion, we confirm the result of Demertzis & Viegi

(2009): the publicity of the target is superfluous in a weakly volatile environment. This result is in

line with what has been observed during the Great Moderation period, where developed countries,

either under IT and non-IT, have experienced a low macroeconomic variability (Geraats (2009)).

The performance of IT in these countries appear, thus, at the most, "non-negative" (Walsh

(2009)).

When introducing shocks (either increasing �d or �w values, or both simultaneously), the

value of the expected loss increases, and is minimized with partial announcements (i.e. P < 1).32

The stronger the shocks (either �d or �w), the lower the optimal degree of publicity. Intuitively,

a mitigate dissemination of the target balances the risk of loosing credibility in front of inflation

variability, and the gain from the coordination of inflation expectations at the targeted level.

The stronger the inflationary shocks (i.e. the higher �w values), the higher the optimal

range ⇣ to be communicated around the target, but the optimal range values remain below the

optimal one under the stable scenario (0.0067). Conversely, the higher the model uncertainty

(i.e. the higher �d values), the lower the optimal range values. Yet, the optimal range values are

high (typically above 0.5%), and higher than the ones under the stable scenario and under an

environment with strong inflationary shocks.

Note that, this results contradicts Walsh (2007a), who establishes that complete transparency

is optimal in front of demand shocks. Those demand shocks are assimilable to the disturbances

associated with a high level of �d in our model: in both frameworks, they correspond to the

control error of the CB on the demand through the nominal interest rate. However, the two
32 It should be noted that the loss values are higher in case of partial announcements than in Table 3 under

pure IT or non-IT regimes. However, in the present exercise, monetary policy coefficients are fixed while they
constitute a degree of freedom of monetary policy in Table 3. As a result, we should be cautious when comparing
as such the loss values between Tables 3 and 4 and concluding that a pure non-IT regime over-performs any form
of partial announcements.
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models work differently. In Walsh’s set-up, transparency on the target allows firms to infer the

kind of shocks (demand or supply) that the CB is expecting while, in case of opacity, firms set

their forecasts using the CB’s instrument only, and the so-called opacity bias arises. As firms

only adjust their prices in reaction to supply shocks, a demand shock contaminates inflation if

firms misinterpret the change in the interest rate in reaction to the demand shock, as a change

in response to a supply shock. In our model, the gain (or the loss) of being transparent comes

from the gain of being credible (or the loss of having lost its credibility). Credibility, in turn,

anchors the heterogeneous private inflation expectations, and reduces macroeconomic volatility

through more favourable micro behaviour (i.e. lower-than-unity indexation coefficients �wi,t and

high positive values of the substitution coefficients �di,t). In our set-up, partial dissemination of

the target then limits the risk of losing its credibility, while maintaining a partial anchorage in

case of success. In that respect, the optimal range around the target is relatively high, close to

1%. This result indicates that the insurance against a credibility loss turns out to be the primary

concern of a CB facing high model uncertainty.

By contrast, the need of providing a clear focal point to coordinate expectations– through

an explicit inflation target associated with a moderate radius – is of critical importance when

volatility comes mainly the inflation process per se – see also Libich (2011) for a similar argument

in a context of wage inflation. Accordingly, a lower range minimizes the expected loss under �w-

led than under �d-led volatility.

5 Conclusion

This paper revisits the virtues of transparency of an inflation targeting regime using an agent-

based model. By transparency, we mean the announcement of the numerical value of the infla-

tion target together with a range around it. Thanks to an agent-based perspective, we obtain

a comprehensive way of modelling heterogeneity and bounded rationality from a collection of

interacting agents, while allowing to keep the main monetary policy mechanisms underlying the

dynamics of the baseline NK model. In particular, our ABM incorporates the consumption (real

interest rate) channel and the expectations channel of monetary policy.

In our setting, the benefit from announcing the target arises from the emergence of a virtuous

circle through a loop between credibility and success. Accordingly, inflation expectations may

remain anchored at the CB’s inflation target and inflation may be stabilized around the target.

The trade-off that the CB faces between the inflation objective and the level of activity may

be loosened. Our results confirm that this mechanism prevails in a rather stable environment,

like the so-called Great Moderation period. However, this virtuous circle is not robust to the
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introduction of strong inflationary pressures, even more when coupled with uncertainty affecting

the real transmission channel of monetary policy. This is because inflationary shocks feed back

into the inflation dynamics and may produce a self-defeating mechanism.

In this case, partial dissemination of the target may limit the risk of losing its credibility,

while maintaining a partial anchorage in case of success. We find that providing a clear signal to

anchor inflation expectations on one part of the public, while allowing for a less tightly defined

objective for the remaining part achieves an optimal management of expectations when inflation

and inflation expectations display high degree of volatility. In face of model uncertainty, the

insurance against the loss of credibility through the announcement of a wide range appears of

primary importance.

Overall, our results support the hypothesis that there is a lack of robustness of a fully trans-

parent inflation targeting regime under volatile economic environments.
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A Parameters setting

Each configuration is repeated 30 times as the model is not deterministic. We use a design of experiments
(DoE, hereafter) to cover the space of parameters – see, notably, Salle & Yıldızoğlu (2014) for a peda-

gogical statement. Large sampling methods such as Monte Carlo simulations come at a computational

cost if we aim at considering the effects of numerous parameters with large experiment domains. DoE

allows to minimize the sample size under constraint of representativeness. We use the design proposed by

Cioppa (2002) and provided by Sanchez (2005), which combines space-filling properties and parsimony.

exp. window �mutK �mutW �⇡ �u Pmut Pimit ⇣ (en %)
1 40.00 0.08 0.20 0.40 0.90 0.07 0.19 1.00
2 35.00 0.40 0.09 0.80 0.50 0.03 0.20 0.75
3 35.00 0.20 0.37 0.30 0.00 0.06 0.19 0.25
4 25.00 0.36 0.40 0.80 0.90 0.02 0.21 0.25
5 40.00 0.06 0.21 0.40 0.70 0.07 0.13 1.25
6 40.00 0.38 0.16 0.60 0.40 0.03 0.08 1.75
7 30.00 0.21 0.39 0.50 0.00 0.07 0.13 1.75
8 25.00 0.29 0.38 0.70 0.90 0.03 0.09 2.00
9 30.00 0.14 0.13 1.10 0.70 0.04 0.05 0.50

10 30.00 0.28 0.15 1.40 0.20 0.06 0.07 1.00
11 30.00 0.13 0.31 1.90 0.30 0.02 0.08 0.50
12 30.00 0.30 0.28 1.90 0.80 0.10 0.14 1.00
13 25.00 0.10 0.12 1.10 0.60 0.02 0.24 1.50
14 35.00 0.26 0.18 1.80 0.20 0.06 0.24 1.50
15 25.00 0.12 0.35 1.80 0.40 0.01 0.18 1.50
16 35.00 0.27 0.26 2.00 0.80 0.09 0.16 1.50
17 25.00 0.23 0.23 1.00 0.50 0.06 0.15 1.25
18 5.00 0.37 0.25 1.60 0.10 0.04 0.11 1.25
19 10.00 0.05 0.36 1.30 0.50 0.08 0.10 1.50
20 10.00 0.25 0.08 1.70 1.00 0.05 0.11 2.00
21 20.00 0.09 0.05 1.20 0.10 0.09 0.09 2.00
22 5.00 0.39 0.24 1.60 0.30 0.04 0.17 1.00
23 5.00 0.07 0.29 1.40 0.60 0.08 0.22 0.50
24 15.00 0.24 0.06 1.50 1.00 0.04 0.18 0.50
25 20.00 0.16 0.07 1.30 0.10 0.08 0.21 0.25
26 15.00 0.31 0.32 0.90 0.30 0.07 0.25 1.75
27 15.00 0.17 0.30 0.60 0.80 0.05 0.23 1.25
28 15.00 0.32 0.14 0.10 0.70 0.09 0.23 1.75
29 15.00 0.15 0.17 0.10 0.30 0.01 0.16 1.25
30 20.00 0.35 0.33 0.90 0.40 0.09 0.06 0.75
31 10.00 0.19 0.27 0.30 0.80 0.05 0.06 0.75
32 20.00 0.33 0.10 0.20 0.60 0.10 0.12 0.75
33 10.00 0.18 0.19 0.00 0.20 0.02 0.14 0.75

Table 5: Design of experiments (near-orthogonal latin hypercube) with 8 parameters – (subsec-
tion 3.2).
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DoE (estimation, Sanchez (2005)) Additional points (external validation)
exp. �⇡ �u exp. �⇡ �u

0 1.3 2 0 3.82 0.48
1 0.3 0.5 1 1.56 0.96
2 0.5 0.9 2 3.12 0.08
3 0.8 1.3 3 0.56 0.74
4 3 1.9 4 1.96 1.84
5 4 0.6 5 1.04 1.1
6 2.5 0.4 6 2.6 0.26
7 2.3 1.8 7 2.13 1.72
8 2 1 8 0.1 1.39
9 2.8 0 9 3.33 1.49

10 3.8 1.5
11 3.5 1.1
12 3.3 0.8
13 1 0.1
14 0 1.4
15 1.5 1.6
16 1.8 0.3

Table 6: Design of experiments (orthogonal latin hypercube) with 2 factors (subsection 4.1)

DoE (estimation, Sanchez (2005)) Additional points (external validation)
exp. P ⇣ exp. P ⇣

1 0.30 0.010 1 0.67 0.001
2 0.10 0.003 2 0.89 0.004 1
3 0.10 0.005 3 0.33 0.002
4 0.20 0.007 4 0.56 0.005
5 0.80 0.009 5 0.78 0.008
6 1.00 0.004 6 0.44 0.006
7 0.60 0.003 7 0.00 0.003
8 0.60 0.009 8 0.11 0.009
9 0.50 0.006 9 1.00 0.01

10 0.70 0.001 10 0.22 0.007
11 0.90 0.008
12 0.90 0.006
13 0.80 0.004
14 0.30 0.002
15 0.00 0.007
16 0.40 0.008
17 0.40 0.002

Table 7: Design of experiments (orthogonal latin hypercube) with 2 factors (subsection 4.2),
�⇡ = 1.5, �u = 0.5
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B Technical appendix : kriging metamodeling

B.1 Principle

Let D ⌘ [0, 2] ⇥ [0, 1] 2 R2
and x ⌘ (�⇡,�u) 2 D the two factors. Let the loss function (20) be the

response-variable L : x 2 D ! L(x) 2 R. Kriging model aims at optimally forecasting, for each point

x 2 D, the variable L(x) 2 R through a stochastic process L : x 2 D ! L(x) 2 R, called a metamodel33.
This metamodel is obtained through a linear combination of the n = 17 observations of L over D, denoted

by {L(x1), ...,L(x17)}34
:

L(x) = µ(x) + Z(x) (22)

where µ : x 2 D ! µ(x) ⌘
Pl

j=1 �jfj(x) 2 R, l > 0, fj are fixed functions and �j are unknown

coefficients to be estimated, and Z is a stochastic process with zero mean and covariance C : (u, v) 2
D2 ! C(u, v) 2 R.

Kriging has the following properties: it is an exact interpolator (i.e. L(x) = L(x)), it is global (i.e. L
is defined over the whole domain D) and it is spatial: indeed, contrary to LS fitting, in order to determine

L at a point x 2 D, kriging models put more weight on observations of L at points x in the neighbourhood

of x. That is why kriging needs a DoE with good space-filling properties to give accurate estimations.

We use the Matérn v = 5
2 covariance function, which is the default one in DiceKriging-package of R

Development Core Team (2009):

C(xi, xj) = �2
L

kY

g=1

 
1 +

p
5|xi � xj |

✓g
+

5(xi � xj)
2

3✓2g

!
exp

 
�
p
5|xi � xj |

✓g

!
(23)

with k = 2 as we have two factors �⇡ and �u. It is a continuous Gaussian process which is twice

differentiable and therefore gives more accurate estimations. Parameters ✓, which stand for the relative

weight of each factor, and �2
L, the estimated variance of L process, are estimated using maximum of

likelihood. As simulations are stochastic, we integrate L variance across the 30 runs at each of the 17

points into the covariance matrix C (see Roustant et al. (2010)).

We have to choose the trend µ (i.e. to specify functions fj). With two factors, we define four

specification:
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µ(x) = �0 (I)

which is a single trend (called ordinary kriging), a first order polynomial:

µ(x) = �0 + ��⇡�⇡ + ��u�u (II)

to which we add second-order interactions:

µ(x) = �0 + ��⇡�⇡ + ��u�u + ��⇡�u�⇡�u (III)

and a full second-order polynomial:

µ(x) = �0 + ��⇡�⇡ + ��u�u + ��⇡�u�⇡�u + ��2
⇡
�2
⇡ + ��2

u
�2
u (IV)

We successively estimate each specification and discriminate between them with external validation.

It is indeed preferable to other techniques such as cross-validation, based on the existing sample and

leave-one out estimation, all the more as we have few observations. We randomly add validation points

to the design and compute the root mean square error (RMSE) between these additional observations

and the estimated one for each of the 4 above specifications (reported in appendix B.2) and choose the

one which minimizes this figure.

33This kind of models originally comes from geostatistics (see Matheron (1963)). See Sacks et al. (1989) for
a complete treatment. We use packages DiceKriging, DiceEval and DiceOptim of R Development Core Team
(2009) to perform all kriging estimations (see Roustant et al. (2010)).

34We have n = 17 observation points of L over D (see DoE 6, Appendix A). As the model is stochastic, we repeat
each 30 times. The kriging estimation has then to be performed in averaging L values over the 30 repetitions
(van Beers & Kleijnen (2004)). This results in n = 17 observations of L over D.

35More complex forms would involve more parameters to be estimated, besides �

2
L, ✓�⇡ and ✓�u .
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As soon as we have a satisfying metamodel L, we determine the pair (�⇤
⇡,�

⇤
u) which minimizes the

estimated value of loss L, denoted by L⇤
. This is done through the packages rgenoud (R-GENetic

Optimization Using Derivatives, see Mebane & Sekhon (2011)) and DiceOptim (see Roustant et al.

(2010)) provided by R Development Core Team (2009). This is a quite powerful optimization function

that efficiently combines evolutionary algorithm methods for global purpose with a derivative-based

(quasi-Newton) method for local search of optima.

B.2 Kriging models reports

�0 ��⇡ ��u ��⇡�u ��2
⇡

��2
u

✓�⇡ ✓�u �

2
L

{�w,�d} = {0.05, 0.05}
IT, ⇣ = 0.1% RMSE: 0.0458 (I) - 0.0497 (II) - 0.0471 (III) - 0.0491 (IV)
0.0696 0.174 0.881 0.0022
IT, ⇣ = 1% RMSE: 0.019 (I) - 0.0136 (II) - 0.0193 (III) - 0.0269 (IV)
0.0367 -0.0087 0.0104 0.000 3.664 0.0006
non-IT, ⇣ = 0.1% RMSE: 0.0401 (I) - 0.0343 (II) - 0.0333 (III) - 0.0328 (IV)

0.0456 -0.0121 0.0464 0.0022 -0.026 0.0048 0.000 2.666 0.001
non-IT, ⇣ = 1% RMSE: 0.0185 (I) - 0.0197 (II) - 0.0196 (III) - 0.0195 (IV)
0.0385 0.0402 0.000 0.0006

{�w,�d} = {0.05, 0.25}
IT, ⇣ = 0.1% RMSE: 0.0502 (I) - 0.043 (II) - 0.0366 (III) - 0.0428 (IV)
0.0288 0.0279 0.1329 0.0019 0.001 0.000 0.0011
IT, ⇣ = 1% RMSE: 0.0101 (I) - 0.0102 (II) -0.0099 (III) - 0.011 (IV)
0.0401 -0.0084 -0.0166 0.0074 1.854 0.000 0.0001
non-IT, ⇣ = 0.1% RMSE: 0.0248 (I) - 0.0275 (II) - 0.0276 (III) - 0.031 (IV)
0.0521 0.897 0.463 0.0089
non-IT, ⇣ = 1% RMSE: 0.0144 (I) - 0.0171 (II) - 0.0168 (III) - 0.016 (IV)
0.0297 0.002 0.001 0.0004

{�w,�d} = {0.05, 0.4}
IT, ⇣ = 0.1% RMSE: 0.052 (I) - 0.0501 (II) - 0.049 (III) - 0.05 (IV)
0.0472 -0.0075 0.046 -0.0036 0.000 1.959 0.0014
IT, ⇣ = 1% RMSE: 0.031 (I) - 0.0266 (II) -0.025 (III) - 0.0267 (IV)
0.0543 -0.0047 -0.022 0.0062 6.8 0.00 0.0005
non-IT, ⇣ = 0.1% RMSE: 0.038 (I) - 0.0452 (II) - 0.0461 (III) - 0.0551 (IV)
0.0434 0.0938 4.00 0.0006
non-IT, ⇣ = 1% RMSE: 0.0154 (I) - 0.017 (II) - 0.0162 (III) - 0.0155 (IV)
0.0284 2.159 0.000 0.0002

{�w,�d} = {0.25, 0.4}
IT, ⇣ = 0.1% RMSE: 0.037 (I) - 0.0438 (II) - 0.0417 (III) - 0.044 (IV)
0.1366 5.907 0.008 0.0011
IT, ⇣ = 1% RMSE: 0.03 (I) -0.0326 (II) - 0.0302(III) - 0.031 (IV)
0.0922 1.353 0.001 0.0006
non-IT, ⇣ = 0.1% RMSE: 0.0472 (I) - 0.0482 (II) - 0.0472 (III) - 0.0609 (IV)
0.0902 0.001 2.559 0.0014
non-IT, ⇣ = 1% RMSE: 0.046 (I) - 0.0481 (II) - 0.048 (III) - 0.0477 (IV)
0.1026 0.002 2.923 0.0003

{�w,�d} = {0.25, 0.05}
IT, ⇣ = 0.1% RMSE: 0.0471(I) - 0.0547 (II) - 0.041 (III) - 0.042 (IV)
0.1241 -0.0207 -0.023 0.0164 0.000 3.392 0.0012
IT, ⇣ = 1% RMSE: 0.057 (I) - 0.052 (II) - 0.0544(III) - 0.049 (IV)

0.1086 -0.0327 -0.0473 0.0027 0.021 0.021 0.461 0.000 0.0008
non-IT, ⇣ = 0.1% RMSE: 0.042 (I) - 0.0494 (II) - 0.043 (III) - 0.05(IV)
0.1256 0.000 1.7233 0.0005
non-IT, ⇣ = 1% RMSE: 0.022 (I) - 0.0277 (II) - 0.0265 (III) - 0.031 (IV)
0.0628 0.325 0.775 0.0006

{�w,�d} = {0.4, 0.05}
IT, ⇣ = 0.1% RMSE: 0.0.079(I) - 0.048 (II) - 0.054 (III) - 0.068 (IV)
0.169 -0.199 -0.0098 0.1671 4 0.0018

IT, ⇣ = 1% RMSE: 0.09 (I) - 0.054 (II) - 0.089 (III) - 0.072 (IV)
0.0908 0.0244 0.0668 0.2255 0.0138 0.0014
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non-IT, ⇣ = 0.1% RMSE: 0.063 (I) - 0.062 (II) - 0.061 (III) - 0.057 (IV)

0.1502 0.005 -0.0614 -0.008 0.0226 0.002 0.358 4 0.0014
non-IT, ⇣ = 1% RMSE: 0.033 (I) - 0.044 (II) - 0.043 (III) - 0.0422 (IV)
0.0943 0.342 0.393 0.0018

{�w,�d} = {0.4, 0.25}
IT, ⇣ = 0.1% RMSE: 0.039(I) - 0.041 (II) - 0.044 (III) - 0.067 (IV)
0.2123 0.000 4.000 0.0013
IT, ⇣ = 1% RMSE: 0.063 (I) - 0.072 (II) - 0.0765 (III) - 0.077 (IV)
0.0433 0.000 2.786 0.0006
non-IT, ⇣ = 0.1% RMSE: 0.042 (I) - 0.048 (II) - 0.046 (III) - 0.059 (IV)
0.2273 0.0015 0.0309 0.0017
non-IT, ⇣ = 1% RMSE: 0.051 (I) - 0.036 (II) - 0.054 (III) - 0.049 (IV)
0.1647 -0.022 -0.0183 0.4041 1.0331 0.0037

{�w,�d} = {0.25, 0.25}
IT, ⇣ = 0.1% RMSE: 0.0278(I) - 0.0417 (II) - 0.0355 (III) - 0.0321 (IV)
0.0946 -0.0045 0.0348 0.004 2.674 0.0007
IT, ⇣ = 1% RMSE: 0.043 (I) - 0.0472 (II) - 0.0477 (III) - 0.0482 (IV)
0.0831 0.05 1.628 0.0011
non-IT, ⇣ = 0.1% RMSE: 0.0622 (I) - 0.0555 (II) - 0.053 (III) - 0.0588 (IV)
0.0853 -0.0101 -0.0104 0.0106 0.000 3.946 0.0006
non-IT, ⇣ = 1% RMSE: 0.036 (I) - 0.0303 (II) - 0.03 (III) - 0.024 (IV)

0.0767 -0.0164 0.0312 0.0027 -0.013 -0.0034 0.2338 1.714 0.0003

Table 8: Kriging models reports – 2 parameters (subsection 4.1)

�0 �P �⇣ �P⇣ �P2 �⇣2 ✓P ✓⇣ �

2
L

{�w,�d} = {0.05, 0.05}
RMSE: 0.007 (I) - 0.0081 (II) - 0.008 (III) - 0.013 (IV)

0.0309 0.12 1.34 0.0002
{�w,�d} = {0.25, 0.05}

RMSE: 0.013 (I) - 0.0124 (II) - 0.012 (III) - 0.0123 (IV)
0.0137 0.065 4.4635 -8.899 0.000 0.01 0.0001

{�w,�d} = {0.4, 0.05}
RMSE: 0.0192 (I) - 0.0192 (II) - 0.0191 (III) - 0.018 (IV)

0.0571 -0.0201 0.299 0.007 -101.81 1.856 0.0013 0.000 0.0002
{�w,�d} = {0.4, 0.25}

RMSE: 0.03 (I) - 0.033 (II) - 0.031 (III) - 0.032 (IV)
0.0534 0.000 0.56 0.0002

{�w,�d} = {0.05, 0.25}
RMSE: 0.0266 (I) - 0.022 (II) - 0.0247 (III) - 0.019 (IV)

0.0776 -0.0405 -14.62 0.014 951.9 3.373 0.000 0.000 0.0000
{�w,�d} = {0.05, 0.4}

RMSE: 0.0053 (I) -0.0067 (II) - 0.0061 (III) - 0.009 (IV)
0.0276 0.034 0.99 0.0000

{�w,�d} = {0.25, 0.4}
RMSE: 0.0145 (I) -0.0104 (II) - 0.013 (III) - 0.022 (IV)

0.034 0.03 -0.861 0.000 0.000 0.0004
{�w,�d} = {0.25, 0.25}

RMSE: 0.0104 (I) - 0.0116 (II) - 0.0113 (III) - 0.0114 (IV)
0.087 0.071 0.003 0.0000

Table 9: Kriging models reports – 2 parameters (subsection 4.2)
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